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Abstract

This paper introduces ambiguous transfers to the problems of full surplus extraction and implementation 
in finite dimensional naive type spaces. The mechanism designer commits to one transfer rule but informs 
agents of a set of potential ones. Without knowing the adopted transfer rule, agents are assumed to make 
decisions based on the worst-case expected payoffs. A key condition in this paper is the Beliefs Determine 
Preferences (BDP) property, which requires an agent to hold distinct beliefs about others’ information under 
different types. We show that full surplus extraction can be guaranteed via ambiguous transfers if and only 
if the BDP property is satisfied by all agents. When agents’ beliefs can be generated by a common prior, 
all efficient allocations are implementable via individually rational and budget-balanced mechanisms with 
ambiguous transfers if and only if the BDP property holds for all agents. This necessary and sufficient 
condition is weaker than those for full surplus extraction and implementation via Bayesian mechanisms. 
Therefore, ambiguous transfers may achieve first-best outcomes that are impossible under the standard 
approach. In particular, with ambiguous transfers, efficient allocations become implementable generically 
in two-agent problems, a result that does not hold under a Bayesian framework.
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1. Introduction

Many transaction mechanisms have uncertain rules. For instance, Priceline Express Deals of-
fer travelers a known price for a hotel stay, but the exact name and location of the hotel remain 
unknown until the completion of payment. Alternatively, some stores run scratch-and-save pro-
motions. Consumers receive scratch cards during check-out, which reveal discounts of uncertain 
levels, and thus the costs of their purchases remain unknown at the time they decide to buy. As a 
third example, eBay allows sellers of auction-style listings to set hidden reserve prices.

In all the above mechanisms, the mechanism designer introduces uncertainty about the al-
location and/or transfer rule without telling agents the underlying probability distribution. The 
subjective expected utility model can be adopted to describe agents’ decision making without an 
objective probability. However, since Ellsberg (1961), many studies have challenged this model, 
arguing that decision makers tend to be ambiguity-averse. Therefore, it is important to understand 
if and how a mechanism designer can benefit from agents’ ambiguity aversion. More specifically, 
we would like to know whether engineering ambiguity on rules of mechanisms can help the de-
signer achieve the first-best outcome.

This paper introduces ambiguous transfers to study two problems. One is full surplus extrac-
tion. The other is interim individually rational and ex-post budget-balanced implementation of 
any ex-post efficient allocation rule. There is one mechanism designer (assumed to be female) 
and at least two agents (assumed to be male). The analysis is based on finite dimensional naive 
type spaces, i.e., those in which each agent’s type is his payoff-relevant private information. 
The problem of full surplus extraction aims to design a mechanism in which agents transfer the 
entire surplus to the designer. The efficient implementation problem constructs an interim incen-
tive compatible, interim individually rational, and ex-post budget-balanced mechanism such that 
the socially optimal outcome emerges as an equilibrium. In our model, the mechanism designer 
informs agents of the exact allocation rule. She also commits to one transfer rule, but the commu-
nication is ambiguous so that agents only know a set of potential transfer rules. Without knowing 
the adopted transfer rule, agents are assumed to be ambiguity-averse. More specifically, agents 
are maxmin expected utility maximizers who make decisions based on the worst-case scenario.

Our main result shows that the necessary and sufficient condition to ensure the existence 
of first-best mechanisms with ambiguous transfers is the Beliefs Determine Preferences (BDP) 
property.2 In particular, we show that full surplus extraction can be guaranteed via ambiguous 
transfers if and only if the BDP property is satisfied by all agents. In addition, when agents’ be-
liefs can be generated by a common prior, every efficient allocation rule is implementable via an 

2 The property was introduced by Neeman (2004). It requires that an agent should hold distinct beliefs about others’ 
types under different types of himself.
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interim individually rational and ex-post budget-balanced mechanism with ambiguous transfers 
if and only if the BDP property holds for all agents. By confining the analysis to private value 
common prior environments, we further show that efficient implementation can be guaranteed if 
and only if the BDP property fails for at most one agent. As an extension, we establish necessary 
and slightly stronger sufficient conditions for efficient implementation when beliefs may not be 
generated by a common prior. Lastly, we discuss the robustness of our sufficiency results under 
alternative models of ambiguity aversion.

The BDP property is weaker than Crémer and McLean (1988)’s Convex Independence condi-
tion, which is necessary and sufficient to guarantee full surplus extraction via Bayesian mecha-
nisms. Convex Independence, together with the Identifiability condition established by Kosenok 
and Severinov (2008), is necessary and sufficient for implementing any efficient allocation rule 
via an interim individually rational and ex-post budget-balanced Bayesian mechanism. In both 
the full surplus extraction and the implementation problems, the ambiguous mechanism design 
approach requires a strictly weaker condition to obtain the first-best outcome than the Bayesian 
approach. As a result, when the conditions of Crémer and McLean (1988) or Kosenok and 
Severinov (2008) fail, engineering ambiguity deliberately may allow the designer to achieve 
first-best outcomes that are impossible under Bayesian mechanisms. Intuitively, this is because 
when ambiguous transfers are introduced, we do not need to construct one transfer rule satisfy-
ing all incentive compatibility constraints simultaneously. Instead, different transfer rules can be 
adopted to guarantee different incentive compatibility constraints, which may make mechanism 
design problems easier.

In applications, it is of interest to study some cases where Crémer and McLean (1988) or 
Kosenok and Severinov (2008)’s necessary and sufficient conditions fail, although a few works 
that we discuss in Section 1.1 show that these conditions are weak in some sense. In particular, 
the BDP property imposes weaker restrictions on the cardinality of the finite type space than 
Convex Independence and Identifiability. For example, when one agent has more types than the 
number of type profiles of all other agents, Convex Independence fails for this agent with positive 
probability, in which case the mechanism designer cannot always extract the full surplus. As 
another instance, Kosenok and Severinov (2008)’s necessary and sufficient conditions can never 
hold simultaneously for any common prior with only two agents, indicating an impossibility 
result on two-agent implementation problems. However, the BDP property holds for all agents 
in finite dimensional naive type spaces generically regardless of the number of agents and the 
cardinality of the type space. Hence, allowing for ambiguous transfers may help the mechanism 
designer to resolve these impossibility results.

In this paper, the mechanism designer announces an efficient allocation rule and introduces 
ambiguity in transfer rules only. As the ex-post efficient allocation rule is often unique in a 
finite-type framework, the mechanism designer may not have multiple allocation rules to choose 
from. In a related paper, Di Tillio et al. (2017) study how second-best revenue in an independent 
private value auction can be improved if the seller introduces ambiguity in both allocation and 
transfer rules. We discuss more on the relationship with this paper in Section 1.1.

The paper proceeds as follows. We review the literature in Section 1.1 and introduce the 
environment in Section 2. Our main result is presented in Section 3. Section 4 extends our main 
result along two directions. Section 5 concludes. The Appendix collects all omitted proofs from 
Section 3. Omitted proofs and examples from Section 4 are relegated to the Online Appendices.
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1.1. Literature review

1.1.1. Efficient mechanism design
How to implement efficient allocations is a classical topic in mechanism design theory that 

has been widely studied in situations such as public good provision and bilateral trading. Individ-
ual rationality is a natural requirement as agents can opt out of the mechanism. Budget balance 
requires that agents should finance within themselves for the efficient outcome rather than rely 
on an outside budget-breaker. When either individual rationality or budget balance is required, 
the literature provides positive results for efficient mechanism design in private value environ-
ments. For instance, the VCG mechanism (Vickrey (1961), Clarke (1971), and Groves (1973)) 
is ex-post individually rational. The AGV mechanism (d’Aspremont and Gérard-Varet (1979)) is 
ex-post budget-balanced. However, the literature documents a tension between efficiency, indi-
vidual rationality, and budget balance, when agents have independent information. For example, 
in a private value bilateral trading framework, Myerson and Satterthwaite (1983) prove that it is 
impossible to achieve efficiency with an individually rational and budget-balanced mechanism 
in general. With multi-dimensional and interdependent values, Dasgupta and Maskin (2000) and 
Jehiel and Moldovanu (2001) prove that efficient allocations are generically non-implementable.

First-best mechanism design becomes possible in some correlated information environments. 
Crémer and McLean (1985, 1988) establish two conditions to fully extract agents’ surplus in 
private value auctions, among which the Convex Independence condition is necessary and suf-
ficient for full surplus extraction to be a Bayesian Nash equilibrium. When the type space has 
finite dimensions, if no agent has more types than all others’ type profiles, the condition holds for 
all agents under almost all profiles of beliefs. Without restricting the dimension, different notions 
of genericity are adopted in the literature and various conclusions on genericity of Convex In-
dependence (or the weaker BDP property) are made (e.g., Neeman (2004), Heifetz and Neeman 
(2006), Barelli (2009), Chen and Xiong (2011, 2013), Gizatulina and Hellwig (2014, 2017)). 
With continuous types, McAfee and Reny (1992) show that approximate full surplus extraction 
can be achieved. In addition, the recent papers of Liu (2018) and Noda (2019) prove an intertem-
poral variant of Convex Independence is sufficient for first-best mechanism design in dynamic 
environments. By introducing ambiguous transfers, Section 3 of the current paper shows that a 
weaker condition, the BDP property, becomes necessary and sufficient for full surplus extraction.

In an implementation problem, the allocation rule is exogenously given. Thus, the mecha-
nism designer constructs incentive compatible transfers to achieve the desired outcome. In the 
context of exchange economies, McLean and Postlewaite (2002, 2003a,b) propose the notion of 
informational size and prove the existence of incentive compatible and approximately efficient 
outcomes when agents have small informational size.3 Under a mechanism design framework, 
McLean and Postlewaite (2004, 2015) implement efficient allocation rules via individually ratio-
nal mechanisms under the BDP property. In their mechanisms, small outside money is needed 
even when agents are informationally small. Different from these papers, our mechanism for im-
plementation in Section 3 is exactly efficient, individually rational, and budget-balanced without 
imposing any informational smallness assumption.

A few papers study budget-balanced mechanisms with or without independent informa-
tion, including Matsushima (1991), Aoyagi (1998), Chung (1999), d’Aspremont et al. (2004), 

3 For related results, see also Sun and Yannelis (2007, 2008).
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Miller et al. (2007), etc.4 Among these works, d’Aspremont et al. (2004) propose necessary and 
sufficient conditions for budget-balanced mechanisms. None of these papers can guarantee indi-
vidual rationality. Also, they assume that there are at least three agents. However, we are able to 
obtain individual rationality in addition to budget balance, and our mechanism with ambiguous 
transfers works for environments even when there are only two agents.

Matsushima (2007), Kosenok and Severinov (2008), and Gizatulina and Hellwig (2010)
among others design individually rational and budget-balanced mechanisms. Kosenok and Sev-
erinov (2008) propose the Identifiability condition, which along with the Convex Independence 
condition, is necessary and sufficient for implementing any ex-ante socially rational allocation 
rule via an interim individually rational and ex-post budget-balanced Bayesian mechanism. The 
Identifiability condition holds for almost all common priors with at least three agents and under 
some restrictions on the dimension of the type space, but Convex Independence and Identifia-
bility never hold simultaneously in a two-agent setting. Thus, Kosenok and Severinov (2008)
imply an impossibility result in efficient, individually rational, and budget-balanced two-agent 
mechanism design. The BDP property is weaker than Convex Independence, and the Identifia-
bility condition is relaxed. Moreover, the BDP property holds generically in our environments 
even when there are only two agents, and thus we make the impossible possible for two-agent 
implementation problems.

1.1.2. Mechanism design under ambiguity
In the growing literature on mechanism design with ambiguity-averse agents, most of the 

works assume exogenously that agents hold ambiguous beliefs of others’ types. For example, 
Bose et al. (2006), Bose and Daripa (2009), and Bodoh-Creed (2012) study optimal mecha-
nism design with ambiguity-averse agents. De Castro and Yannelis (2018) and De Castro et al. 
(2017a,b) prove that all Pareto efficient allocations are incentive compatible and thus imple-
mentable when agents’ ambiguous beliefs are unrestricted. Under the private value assumption, 
Wolitzky (2016) establishes a necessary condition for the existence of an efficient, individually 
rational, and weak budget-balanced mechanism. In an environment with multi-dimensional and 
interdependent values, Song (2018) quantifies the amount of ambiguity that is necessary and 
sometimes sufficient for efficient mechanism design. We do not assume exogenous ambiguity in 
agents’ beliefs, which is the biggest difference from the above papers.

Bose and Renou (2014) and Di Tillio et al. (2017) contrast the above works in that ambiguity 
is endogenously engineered by the mechanism designer. Before the allocation stage, Bose and 
Renou (2014) let the mechanism designer communicate with agents via an ambiguous device, 
which generates multiple beliefs. Their paper characterizes social choice functions that are im-
plementable under this method. Our paper is different from Bose and Renou (2014), as we do 
not need multiple beliefs on other agents’ private information.

Di Tillio et al. (2017) consider the problem of revenue maximization in a private value and 
independent belief auction. The seller commits to a simple mechanism, i.e., an allocation and 
transfer rule, but informs agents of a set of simple mechanisms. As all the simple mechanisms 
generate the same expected revenue (imposed by the Consistency condition), agents do not 
know the exact rule and thus make decisions based on the worst-case scenario. Compared to 
the Bayesian mechanism, their ambiguous approach yields a higher expected revenue.

4 Matsushima (1991), Chung (1999), d’Aspremont et al. (2004) only consider private value utility functions. In this 
case, incentive compatibility can be achieved via a VCG mechanism, rather than via information correlation. Thus, they 
allow for independent information.



H. Guo / Journal of Economic Theory 183 (2019) 76–105 81
In the current paper, ambiguity is engineered in a similar way to Di Tillio et al. (2017). 
However, instead of studying how ambiguous mechanisms improve second-best revenues un-
der independent beliefs, our paper studies when the first-best outcome in surplus extraction or 
implementation can be achieved without restricting attention to independent beliefs. The essen-
tial factor that enables us to achieve the first-best outcome in a finite type space is the correlation 
in agents’ beliefs and more particularly, the BDP property.

As mentioned before, we fix an efficient allocation rule and only allow for ambiguity in 
transfer rules, but in Di Tillio et al. (2017)’s mechanism both allocation and transfer rules are 
ambiguous. Our restriction on unambiguous allocation rule is compatible with Di Tillio et al. 
(2017)’s Consistency condition. In the full surplus extraction problem, each transfer rule leaves 
agents zero surplus and gives the designer the full surplus on path. In the efficient implementa-
tion problem, each transfer rule leads to the first-best efficiency on path. Therefore, all transfer 
rules are credible. The restriction on unambiguous allocation rule is closely related to two facts: 
first, we aim to achieve the first-best outcome in full surplus extraction or implementation, and 
second, our argument is confined to finite type spaces. Allowing for ambiguity in allocation rules 
may fail full surplus extraction and implementation. To see this, consider a finite-type environ-
ment where the total surplus is maximized by a unique allocation rule. In this case, any other 
allocation rule is inefficient and has a lower surplus level. As the efficient allocation rule must 
be used in the mechanisms for full surplus extraction and implementation, and as agents know 
the designer’s objective is to extract the full surplus or maximize efficiency, any other rule with 
a lower surplus level is non-credible to the agents. Hence, multiple allocation rules are not used 
in our environment.

In Di Tillio et al. (2017)’s optimal mechanism under independent beliefs and finitely many 
types, ambiguity in allocation rules plays a role. Therefore, they cannot obtain the first-best rev-
enue. In fact, in a screening or an independent private value auction framework, allowing for 
ambiguous transfers but not ambiguous allocations does not improve the seller’s revenue com-
pared to a standard unambiguous mechanism. However, according to Di Tillio et al. (2017)’s 
Appendix B, their approach works for full surplus extraction with continuous types. This is be-
cause there are infinitely many ex-ante efficient allocation rules. Among them, every two rules 
are the same except on a null set in the type space. With continuous types, if an efficiency-
maximizing social planner wants to implement an ex-ante efficient allocation rule, she can follow 
the approach of Di Tillio et al. (2017)’s Appendix B as well. Hence, the current paper focuses on 
environments with finitely many types.

2. Environment

We study an asymmetric information environment given by E = {I, A, (�i, ui, pi)
N
i=1}. Let 

I = {1, ..., N} be a finite set of agents. Assume N ≥ 2. Denote the set of feasible outcomes
by A. Let θi ∈ �i be agent i’s type, which is his payoff-relevant private information. Denote 
the type space ×i∈I�i by �. For simplicity, denote ×j∈I, j �=i�j by �−i and ×k∈I, k �=i,j�k by 
�−i−j . Let |�i | be the cardinality of �i . Assume 2 ≤ |�i | < ∞. Each agent i has a quasi-linear
utility function ui(a, θ) + b, where a ∈ A is a feasible outcome, b ∈ R is a monetary transfer, 
and θ ∈ � is the realized type profile. For each θi ∈ �i , let pi(·|θi) ∈ �(�−i ) be type-θi agent 
i’s belief of other agents’ types, where type-θi agent i believes that others have type profile θ−i

with probability pi(θ−i |θi).
The structure of environment E is assumed to be common knowledge between the mechanism 

designer and agents, but every agent’s realized type is his private information. As a type in this 
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paper only concerns payoff-relevant information, such a type space is sometimes called a naive 
type space in the literature.

We impose the following assumption on beliefs throughout the paper.

Assumption 2.1. For all i, j ∈ I with i �= j , and (θi, θj ) ∈ �i × �j , type-θi agent i’s marginal 
belief that agent j has type θj is positive, i.e., pi(θj |θi) ≡ ∑

θ−i−j
pi(θj , θ−i−j |θi) > 0.

We remark that when N ≥ 3, Assumption 2.1 is weaker than the full support assumption, 
which requires instead that pi(θ−i |θi) > 0 for each i, θi , and θ−i .

Two more conditions will be imposed for a fraction of our later analysis. In the special 
case that ui

(
a, (θi, θ−i )

) = ui

(
a, (θi, θ ′−i )

)
for all θi ∈ �i , θ−i , θ ′−i ∈ �−i , and a ∈ A, we 

say ui has private value and denote ui

(
a, (θi, θ−i )

)
by ui(a, θi). We say a profile of be-

liefs (pi)i∈I can be generated by the common prior p ∈ �(�) if the marginal probability 
p(θi) ≡ ∑

θ−i∈�−i
p(θi, θ−i ) > 0 and the conditional probability p(θ−i |θi) ≡ p(θ)

p(θi )
= pi(θ−i |θi)

for all i ∈ I , θi ∈ �i , and θ−i ∈ �−i . A profile of beliefs (pi)i∈I is said to satisfy the common 
prior assumption if there exists p ∈ �(�) such that (pi)i∈I can be generated by the common 
prior p. We will be explicit when imposing any of the conditions in later analysis.

An allocation rule q : � → A is a plan to assign a feasible outcome contingent on agents’ 
realized type profile. An allocation rule q is said to be ex-post efficient if 

∑
i∈I ui

(
q(θ), θ

) ≥∑
i∈I ui

(
a, θ

)
for all a ∈ A and θ ∈ �.

Definition 2.1. A mechanism with ambiguous transfers is a pair M = (q, �), where q : � →
A is an allocation rule, and � is a set of transfer rules with a generic element φ : M → RN . We 
call the set � ambiguous transfers.5

The mechanism works in the following way. The designer first commits to the allocation rule 
q : M → A and an arbitrary transfer rule φ ∈ � secretly. Before reporting messages, agents are 
informed of the allocation rule q and ambiguous transfers �, but not φ. After agents report their 
messages, the mechanism designer reveals φ. Then allocations and transfers are made according 
to the reported messages as well as q and φ.

As agents only know the set �, we follow the spirit of Gilboa and Schmeidler (1989)’s
maxmin expected utility (MEU) and assume that agents make decisions based on the worst-
case expected payoff. Hence, a type-θi agent i’s interim payoff is

inf
φ∈�

∑
θ−i∈�−i

[ui

(
q(θi, θ−i ), (θi, θ−i )

) + φi(θi, θ−i )]pi(θ−i |θi).

We remark that this expression follows Di Tillio et al. (2017) in adopting the infimum notation, 
since � does not have to be compact. However, as we focus on finite dimensional type spaces, we 
are able to construct a finite set � to fulfill our goal when the sufficient conditions in Theorem 3.1
or Proposition 4.1 are satisfied. We also remark that an agent i only cares about the transfer to 
himself, φi . Thus, in the above expression, it is equivalent to let the infimum be chosen among 
all φi ∈ �i .

5 We focus on direct mechanisms. One can follow Di Tillio et al. (2017) to establish a revelation principle, and thus the 
restriction on direct mechanisms is without loss of generality.
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Throughout this paper, the outside option x0 is normalized to give all agents zero payoffs at 
all type profiles. A mechanism with ambiguous transfers (q, �) is said to satisfy interim indi-
vidual rationality (IR) if infφ∈�

∑
θ−i∈�−i

[ui

(
q(θi, θ−i ), (θi, θ−i )

)+φi(θi, θ−i )]pi(θ−i |θi) ≥ 0
for all i ∈ I and θi ∈ �i . It satisfies ex-post budget balance (BB) if 

∑
i∈I φi(θ) = 0 for all 

φ ∈ � and θ ∈ �. The mechanism is said to satisfy interim incentive compatibility (IC) if 
infφ∈�

∑
θ−i∈�−i

[ui

(
q(θi, θ−i ), (θi, θ−i )

) + φi(θi, θ−i )]pi(θ−i |θi) ≥ infφ∈�

∑
θ−i∈�−i

[ui

(
q(θ ′

i ,

θ−i ), (θi, θ−i )
) + φi(θ

′
i , θ−i )]pi(θ−i |θi) for all i ∈ I and θi, θ ′

i ∈ �i .6

This paper studies two related but different objectives. One is full surplus extraction, and the 
other is implementation of an efficient allocation rule via an IR and BB mechanism.

In the sense of McAfee and Reny (1992), a mechanism with ambiguous transfers M = (q, �)

is said to extract the full surplus if it is IR and IC, q is ex-post efficient, and∑
θ−i∈�−i

[ui

(
q(θ), θ

) + φi(θ)]pi(θ−i |θi) = 0,∀φ ∈ �.

The requirement that every φ ∈ � extracts the full surplus follows from Di Tillio et al. (2017)’s 
Consistency condition. In other words, since the designer’s objective is to extract the full surplus, 
any transfer rule that leaves agents a positive surplus is not credible.

When studying the implementation problem, we want the mechanism to be IR and BB so that 
agents are willing to participate and outside money is not needed to finance the efficient outcome. 
An allocation rule q is implementable by an IR and BB mechanism with ambiguous transfers if 
there exists an IC, IR, and BB mechanism with ambiguous transfers M = (q, �).

3. Main result

Our key condition, the Beliefs Determine Preferences property, is introduced by Neeman 
(2004). When the BDP property holds for an agent, he should have distinct beliefs under dif-
ferent types of himself. Thus, it is necessary that agents’ beliefs are correlated.

Definition 3.1. The Beliefs Determine Preferences (BDP) property holds for agent i if there do 
not exist types θ̄i , θ̂i ∈ �i with θ̄i �= θ̂i such that pi(·|θ̄i ) = pi(·|θ̂i ).

The following theorem is the main result of the paper.

Theorem 3.1.

1. Given a profile of beliefs (pi)i∈I , full surplus extraction under any profile of utility functions 
can be achieved via a mechanism with ambiguous transfers if and only if the BDP property 
holds for all agents;

2. when agents’ beliefs (pi)i∈I can be generated by a common prior p, any ex-post efficient 
allocation rule under any profile of utility functions is implementable via an IR and BB mech-
anism with ambiguous transfers if and only if the BDP property holds for all agents;

6 Like many mechanism design works with ambiguity aversion, e.g., Wolitzky (2016), Di Tillio et al. (2017), Song 
(2018), we restrict attention to pure strategies. Depending on how the payoff of playing a mixed strategy is formalized, 
the restriction could be with or without loss of generality. See Wolitzky (2016) for more details.
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3. when agents’ beliefs (pi)i∈I can be generated by a common prior p, any ex-post efficient 
allocation rule under any profile of private value utility functions is implementable via an IR 
and BB mechanism with ambiguous transfers if and only if the BDP property holds for at least 
N − 1 agents.

We remark that the number of agents, the dimension of the finite type space, whether the utility 
functions have private or interdependent value, and whether agents’ beliefs can be generated by 
a common prior do not change the conclusion of Part 1 of the theorem.

Parts 2 and 3 of Theorem 3.1 focus on implementation via an IR and BB mechanism with 
ambiguous transfers, but full surplus extraction does not require the BB condition. To guaran-
tee the BB condition and obtain unified necessary and sufficient conditions for implementation, 
we impose that beliefs can be generated by a common prior for Parts 2 and 3.7 Part 2 does not 
restrict the environment to be a private value one while Part 3 does. When focusing on private 
value utility functions, Part 3 obtains a weaker condition for implementation compared to Part 2. 
However, according to Part 3, even if ambiguous transfers are allowed and we confine our anal-
ysis to private value environments, we can always find non-implementable efficient allocation 
rules under independent beliefs.

To prove the necessity half of the first two statements, when the BDP property fails for one 
agent, we construct a profile of utility functions under which full surplus extraction fails and an 
efficient allocation rule is not implementable via an IR and BB mechanism with ambiguous trans-
fers.8 When the BDP property fails for two agents, we construct private value utility functions 
under which efficient implementation fails.

We prove the sufficiency statements of Theorem 3.1 by constructing mechanisms consisting of 
two transfer rules. Although there are mechanisms with more transfers to extract the full surplus 
or implement the efficient allocation rule, to be consistent with the spirit of minimal mechanisms 
of Di Tillio et al. (2017), we only present the ones with two rules.

To prove the sufficiency direction of Part 1, the Appendix begins with several lemmas. 
Lemma A.1 shows that for each i ∈ I and θ̄i �= θ̂i , there exists a transfer rule (a lottery) ψθ̄i θ̂i

such that (1) when all agents truthfully report, for every agent j ∈ I and type θj ∈ �j , agent j ’s 

component of lottery ψθ̄i θ̂i gives type-θj agent j zero expected value, (2) agent i’s component 

of ψθ̄i θ̂i gives type-θ̄i agent i a negative expected value when he unilaterally misreports θ̂i . This 
step is proven via Fredholm’s theorem of the alternative.

Lemmas A.2 and A.3 construct a linear combination of transfer rules (ψθ̄i θ̂i )
i∈I,θ̄i ,θ̂i∈�i,θ̄i �=θ̂i

, 
denoted by ψ , such that (1) when all agents truthfully report, for every i and θi , agent i’s com-
ponent of lottery ψ gives type-θi agent i zero expected value, (2) for every i and θ̄i �= θ̂i , when 
all other agents truthfully report, type-θ̄i agent i receives non-zero expected value when he uni-
laterally misreports θ̂i .

7 The common prior assumption is used explicitly in Lemmas A.4 and A.5 and thus proof of the sufficiency direction 
of Parts 2 and 3 as well as the necessity direction of Part 3. Section 4.1 relaxes this assumption and presents necessary 
and (stronger) sufficient conditions on implementation.

8 The construction adopts interdependent value utility functions so that there is a unified necessity proof for Parts 1 
and 2. One can also follow Crémer and McLean (1988) to construct private value utility functions for the necessity proof 
of Part 1. By Part 3 of Theorem 3.1, when the BDP property fails for only one agent, efficient allocations under private 
value environments are implementable. Thus, the necessity direction of Part 2 has to be proved with interdependent value 
utility functions.
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Then pick an ex-post efficient allocation rule q and let ηi(θ) = −ui(q(θ), θ) for all i ∈ I and 
θ ∈ �. Let the set of ambiguous transfers for agent i be �i = {ηi + cψi, ηi − cψi}. Because 
ηi transfers agent i’s entire surplus to the mechanism designer, and because ψi has zero ex-
pected value when every agent truthfully reports, each IR constraint binds. In addition, as ψi has 
non-zero expected value whenever i misreports unilaterally, the lower expected value between 
ηi + cψi and ηi − cψi is negative under a sufficiently large c. Thus, IC can be achieved. Intu-
itively, with multiple transfer rules, different IC constraints can be satisfied by distinct transfers. 
Namely, we do not need one transfer rule to satisfy all IC constraints, and thus the full surplus 
can be extracted under a weaker condition than under Bayesian mechanisms.

To prove the sufficiency direction of Part 2, Lemma A.5 constructs a BB transfer rule (a 
lottery) ψ such that (1) each agent’s component of ψ gives him zero interim values on path, 
and (2) when any agent i unilaterally deviates from truthful revelation, ψi gives him a non-zero 
interim value. The common prior assumption is adopted to guarantee BB of ψ . Then pick a BB 
transfer rule η to redistribute surplus between agents so that the IR constraint is satisfied for every 
agent. Given the utility functions and the allocation rule to be implemented, there always exists a 
sufficiently large constant c > 0 such that the set of ambiguous transfers � = {η + cψ, η − cψ}
can implement the allocation rule. The efficiency of the allocation rule does not play a role in the 
proof of Part 2.9

For proof of the sufficiency direction of Part 3, we construct a set of ambiguous transfers 
� = {η + cψ, η − cψ} that differs slightly from the one for Part 2. The BB lottery ψ gives every 
agent zero interim value on path. Since the BDP property holds for N − 1 agents, the lottery 
parts in � incentivize truthful reports of N − 1 agents. Let η allocate the total surplus generated 
by the efficient allocation rule q to the last agent for whom the BDP property fails. Following the 
spirit of the VCG mechanism, η aligns the last agent’s incentives with the efficiency-maximizing 
mechanism designer, and thus he will also report truthfully in a private value environment. Unlike 
Part 2, efficiency of q plays a role in Part 3.

To this end, we have two remarks on Parts 2 and 3 of Theorem 3.1, when not requiring the 
mechanism to satisfy the BB condition. First, any ex-post efficient allocation rule under any pro-
file of utility functions is implementable via an IR mechanism with ambiguous transfers if and 
only if the BDP property holds for all agents. In fact, Bergemann et al. (2012) have designed IR 
Bayesian mechanisms (which can be viewed as trivial mechanisms with ambiguous transfers) 
for implementation under the BDP property, which proves the sufficiency of the remark. The 
necessity direction of this remark can be proved by the profile of utility functions constructed 
in Parts 1 and 2 of Theorem 3.1 since the BB condition is not used to derive a contradiction 
there. Second, any efficient allocation rule under any profile of private value utility functions 
is implementable via an IR mechanism with ambiguous transfers, regardless of agents’ beliefs. 
This result follows directly from the VCG mechanism, which is a degenerated mechanism with 
ambiguous transfers. The two remarks on implementation without the BB condition do not rely 
on the common prior assumption. Since unambiguous IR mechanisms can be constructed, mech-
anisms with ambiguous transfers do not have an advantage over standard mechanisms in the two 
new problems. Thus, the main contribution of ambiguous transfers to implementation problems 
is to guarantee the BB condition without violating IR.

9 In fact, by combining our proof with that of Kosenok and Severinov (2008), Part 2 can be extended to implement any 
ex-ante socially rational allocation rule q , i.e., q satisfying 

∑
θ∈�

∑
i∈I ui

(
q(θ), θ

)
p(θ) ≥ 0.
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3.1. Comparison

Part 1 of Theorem 3.1 is directly comparable to the result of Crémer and McLean (1988). 
They show that full surplus extraction can be guaranteed via Bayesian mechanisms if and only if 
the Convex Independence condition, defined below, holds for all agents.

Definition 3.2. The Convex Independence (CI) condition holds for agent i ∈ I if for any type 
θ̄i ∈ �i and non-negative coefficients (c

θ̂i
)
θ̂i∈�i

, pi(·|θ̄i ) �= ∑
θ̂i∈�i\{θ̄i } cθ̂i

pi(·|θ̂i ).

The CI condition fails for i with positive probability when |�i| > |�−i |. For example, when 
|�2| = 3 > |�1| = 2, the CI condition fails for agent 2 for sure. As another instance, if N = 3
and (|�1|, |�2|, |�3|) = (5, 2, 2), it is easy to find a non-negligible set of belief profiles under 
which agent 1’s CI fails. The BDP property is weaker than CI in two aspects. Firstly, the BDP 
property holds for i generically even when |�i | > |�−i |. Secondly, when |�i | ≤ |�−i |, the CI 
condition holds for agent i generically, but the BDP property further weakens the CI condition 
by allowing the belief of a type of i to lie in the convex hull of other beliefs of himself. When 
the BDP property holds for all agents but CI fails for someone, ambiguous transfers can perform 
better than Bayesian mechanisms in full surplus extraction.

Example 3.1. This two-agent example demonstrates how ambiguous transfers work and can per-
form better than Bayesian mechanisms in full surplus extraction.

Suppose agent 1 has two types and agent 2 has three. Let agent 1’s beliefs satisfy 
(p1(θ

1
2 |θ1

1 ), p1(θ
2
2 |θ1

1 ), p1(θ
3
2 |θ1

1 )) = (0.2, 0.4, 0.4) and (p1(θ
1
2 |θ2

1 ), p1(θ
2
2 |θ2

1 ), p1(θ
3
2 |θ2

1 )) =
(0.4, 0.2, 0.4). Agent 2’s beliefs are given by (p1(θ

1
1 |θ1

2 ), p1(θ
2
1 |θ1

2 )) = ( 1
3 , 23 ), (p1(θ

1
1 |θ2

2 ),

p1(θ
2
1 |θ2

2 )) = ( 2
3 , 13 ), and (p1(θ

1
1 |θ3

2 ), p1(θ
2
1 |θ3

2 )) = (0.5, 0.5). The CI condition fails for agent 2.
In a single unit auction, denote each type-θi agent i’s private value of winning the good by 

vi(θi). Suppose v2(θ
1
2 ) > v2(θ

2
2 ) > v2(θ

3
2 ) > v1(θ1) > 0 for all θ1 ∈ �1. Crémer and McLean 

(1988) have shown that full surplus extraction is impossible via a Bayesian mechanism.
Next, we see how ambiguous transfers can help. Let the set of ambiguous transfers be � =

(φ1, φ2). Transfers φ1 = (φ1
1 , φ1

2) and φ2 = (φ2
1 , φ2

2) are defined as follows.

φ1
i (θ1, θ2) =

{
cψ1(θ1, θ2), if i = 1,

−v2(θ2) + cψ2(θ1, θ2), if i = 2,

φ2
i (θ1, θ2) =

{−cψ1(θ1, θ2), if i = 1,

−v2(θ2) − cψ2(θ1, θ2), if i = 2,

where c ≥ 1.5(v2(θ
1
2 ) − v2(θ

3
2 )), ψ1 : � →R is given below, and ψ2 = −ψ1.

ψ1(θ) θ1
2 θ2

2 θ3
2

θ1
1 −2 −1 2

θ2
1 1 2 −2

For each type-θ̄i agent i, ψi(θ̄i , ·) has zero expected value under belief pi(·|θ̄i ). When he 
unilaterally misreports θ̂i �= θ̄i , ψi(θ̂i , ·) has non-zero expected value.

Full surplus extraction requires the good to be allocated to agent 2. In addition, agents obtain 
zero interim payoffs on path under both φ1 and φ2. Hence, each IR constraint binds.
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When type-θ̄2 agent 2 misreports θ̂2 �= θ̄2, his worst-case expected payoff is v2(θ̄2) −v2(θ̂2) −
c| ∑θ1∈�1

ψ2(θ1, θ̂2)p2(θ1|θ̄2)| < v2(θ̄2) −v2(θ̂2). Therefore, any “upward” misreport of agent 2
results in a negative expected payoff. As c ≥ 1.5(v2(θ

1
2 ) −v2(θ

3
2 )) and v2(θ

1
2 ) > v2(θ

2
2 ) > v2(θ

3
2 ), 

it is easy to verify the three “downward” IC constraints:

IC(θ1
2 θ2

2 ) 0 ≥ v2(θ
1
2 ) − v2(θ

2
2 ) − c| 1

3 × (−1) + 2
3 × 2| = v2(θ

1
2 ) − v2(θ

2
2 ) − c,

IC(θ1
2 θ3

2 ) 0 ≥ v2(θ
1
2 ) − v2(θ

3
2 ) − c| 1

3 × 2 + 2
3 × (−2)| = v2(θ

1
2 ) − v2(θ

3
2 ) − 2

3c,

IC(θ2
2 θ3

2 ) 0 ≥ v2(θ
2
2 ) − v2(θ

3
2 ) − c| 2

3 × 2 + 1
3 × (−2)| = v2(θ

2
2 ) − v2(θ

3
2 ) − 2

3c.

Agent 1’s IC constraints can be verified similarly. Hence, full surplus extraction is achieved.

Part 2 of Theorem 3.1 is comparable to the result of Kosenok and Severinov (2008). They 
prove that when beliefs can be generated by a common prior p, any efficient allocation rule 
under any profile of utility functions is implementable via an IR and BB Bayesian mechanism, if 
and only if the CI condition holds for all i ∈ I and the Identifiability condition (defined below) 
holds for the common prior p.

Definition 3.3. The common prior p(·) satisfies the Identifiability condition if for any prior 
p̃(·) ∈ �(�) such that p̃(·) �= p(·), there exists an agent i ∈ I and type θ̄i ∈ �i with marginal 
probability p̃(θ̄i ) > 0, such that for any non-negative coefficients (c

θ̂i
)
θ̂i∈�i

, the conditional prob-

ability p̃(·|θ̄i ) �= ∑
θ̂i∈�i

c
θ̂i
p(·|θ̂i ).

When N = 3 and |�i | ≥ 3 for some i ∈ I , or when N > 3, the Identifiability condition holds 
for almost all common priors, but the condition fails if the cardinality restriction is not satisfied. In 
particular, Kosenok and Severinov (2008) have remarked that when N = 2, only priors consistent 
with independent beliefs satisfy this condition. Thus, their necessary and sufficient conditions 
can never hold simultaneously in two-agent settings. In a BB Bayesian mechanism where the 
common prior does not satisfy the Identifiability condition, some agent i may have the incentive 
to misreport in a way that makes the truthful report of some j �= i appear untruthful. This is 
because by BB, i can benefit from a low expected transfer to j , which is the punishment due 
to j ’s (seemingly) untruthful report. However, when the set of ambiguous transfers � is used, i
does not have such an incentive, because whether misreport of j would result in a high or low 
expected transfer to j remains ambiguous. Hence, with ambiguous transfers, we can relax the 
Identifiability condition.

The BDP property is weaker than the CI condition, and the Identifiability condition becomes 
irrelevant in the current environment. When the CI condition fails for some agent or the Identifia-
bility condition fails for the common prior, but the BDP property holds for all agents, ambiguous 
transfers can perform better than Bayesian mechanisms in implementing efficient allocations via 
IR and BB mechanisms. In particular, ambiguous transfers can generically resolve the impossi-
bility result on implementing efficient allocation rules via IR and BB Bayesian mechanisms with 
two agents.

The following example illustrates how ambiguous transfers work.

Example 3.2. Consider the same profile of beliefs (pi)i∈I as in Example 3.1. The beliefs can be 
generated by the common prior p(·) below. Recall the CI condition fails for agent 2. The Identifi-
ability condition also fails for p(·). Following Kosenok and Severinov (2008), one can construct 
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utility functions under which an efficient allocation rule q is not Bayesian implementable. How-
ever, we will prove that q is implementable via ambiguous transfers.

p(θ) θ1
2 θ2

2 θ3
2

θ1
1 0.1 0.2 0.2

θ2
1 0.2 0.1 0.2

Let the feasible set of alternatives A be {x0, x1, x2}. The outcome x0 gives both agents zero 
payoffs at all type profiles. The payoffs given by x1 and x2 are presented in the tables below, 
where the first component is agent 1’s payoff and the second denotes 2’s. Assume 0 < a < B .

u1(x1, θ), u2(x1, θ) θ1
2 θ2

2 θ3
2

θ1
1 a,0 a, a a, a

θ2
1 a,0 a, a a, a

u1(x2, θ), u2(x2, θ) θ1
2 θ2

2 θ3
2

θ1
1 a, a a − 2B,a + B a,0

θ2
1 a, a a − 2B,a + B a,0

The efficient allocation rule is q(θ1, θ1
2 ) = x2 and q(θ1, θ2

2 ) = q(θ1, θ3
2 ) = x1 for all θ1 ∈ �1. 

Suppose by contradiction that a BB transfer rule φ = (−φ2, φ2) implements q . Then

IC(θ1
1 θ2

1 ) a − 0.2φ2(θ
1
1 , θ1

2 ) − 0.4φ2(θ
1
1 , θ2

2 ) − 0.4φ2(θ
1
1 , θ3

2 )

≥ a − 0.2φ2(θ
2
1 , θ1

2 ) − 0.4φ2(θ
2
1 , θ2

2 ) − 0.4φ2(θ
2
1 , θ3

2 ),

IC(θ2
1 θ1

1 ) a − 0.4φ2(θ
2
1 , θ1

2 ) − 0.2φ2(θ
2
1 , θ2

2 ) − 0.4φ2(θ
2
1 , θ3

2 )

≥ a − 0.4φ2(θ
1
1 , θ1

2 ) − 0.2φ2(θ
1
1 , θ2

2 ) − 0.4φ2(θ
1
1 , θ3

2 ),

IC(θ1
2 θ2

2 ) a + 1
3φ2(θ

1
1 , θ1

2 ) + 2
3φ2(θ

2
1 , θ1

2 ) ≥ 0 + 1
3φ2(θ

1
1 , θ2

2 ) + 2
3φ2(θ

2
1 , θ2

2 ),

IC(θ2
2 θ1

2 ) a + 2
3φ2(θ

1
1 , θ2

2 ) + 1
3φ2(θ

2
1 , θ2

2 ) ≥ a + B + 2
3φ2(θ

1
1 , θ1

2 ) + 1
3φ2(θ

2
1 , θ1

2 ).

Multiply the inequalities by 0.5, 0.5, 0.3, and 0.3 respectively and sum up. We have 1.6a ≥
1.3a + 0.3B , a contradiction.

For each i ∈ I and θ ∈ �, define φ1
i (θ) = cψi(θ) and φ2

i (θ) = −cψi(θ), where ψ = (ψ1, ψ2)

is defined in Example 3.1 and c ≥ B . Let � = {φ1, φ2} be ambiguous transfers.
Both φ1 and φ2 satisfy the BB condition. Each type-θ̄i agent i obtains an interim payoff of a >

0 on path, and thus the IR condition holds. When type-θ2
2 agent 2 misreports θ1

2 , his worst-case 
expected payoff is a + B − c| 2

3 × (−2) + 1
3 × (1)| = a + B − c ≤ a. Thus, we have established 

IC(θ2
2 θ1

2 ). The other IC constraints can be verified similarly. Therefore, the ambiguous transfers 
implement q .

This example can also demonstrate the necessity of the BDP property. Suppose instead that the 
beliefs satisfy p̃2(·|θ1

2 ) = p̃2(·|θ2
2 ) and that an IR and BB mechanism with ambiguous transfers 

(q, �̃) implements q . By adding the following expressions

IC(θ1
2 θ2

2 ) inf
φ̃∈�̃

{a +
∑

θ1∈�1

φ̃2(θ1, θ
1
2 )p̃2(θ1|θ1

2 )} ≥ inf
φ̃∈�̃

{
∑

θ1∈�1

φ̃2(θ1, θ
2
2 )p̃2(θ1|θ1

2 )},

IC(θ2
2 θ1

2 ) inf
φ̃∈�̃

{a +
∑

θ1∈�1

φ̃2(θ1, θ
2
2 )p̃2(θ1|θ2

2 )} ≥ inf
φ̃∈�̃

{a +B +
∑

θ1∈�1

φ̃2(θ1, θ
1
2 )p̃2(θ1|θ2

2 )},

and taking into account p̃2(·|θ1
2 ) = p̃2(·|θ2

2 ), we have 2a ≥ a + B , a contradiction. Hence, im-
plementation via ambiguous transfers cannot be guaranteed without the BDP property.
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To show that ambiguous transfers may improve upon Bayesian mechanisms in the context of 
Part 3 of Theorem 3.1, we present a private value example below.

Example 3.3. In this bilateral trade example with private values, the BDP property fails for agent 
1 and holds for agent 2. The efficient allocation rule is not implementable via a Bayesian mech-
anism, but implementable via ambiguous transfers.

Agent 1 is the seller of one indivisible good and agent 2 is the buyer. Each agent has three 
types. Agents’ beliefs (p1, p2) can be generated by a common prior p. Outcomes in A = {x0, x1}
are feasible, where x0 represents no trade and x1 represents trading. No trade gives both agents 
zero payoff. Agents’ payoffs from outcome x1, the efficient allocation rule q , and the common 
prior p are given in the three tables below.

u1(x1, θ),u2(x1, θ) θ1
2 θ2

2 θ3
2

θ1
1 −19,20 −19,3 −19,1

θ2
1 −2,20 −2,3 −2,1

θ3
1 0,20 0,3 0,1

q(θ) θ1
2 θ2

2 θ3
2

θ1
1 x1 x0 x0

θ2
1 x1 x1 x0

θ3
1 x1 x1 x1

p(θ) θ1
2 θ2

2 θ3
2

θ1
1 0.1 0.1 0.1

θ2
1 0.1 0.1 0.1

θ3
1 0.2 0.15 0.05

Suppose by way of contradiction that there exists an IR and BB Bayesian mechanism 
φ = (φ1, φ2) such that q is implementable. By the BB condition, φ1 = −φ2. Similar to Ex-
ample 3.2, we can express both agents’ IR and IC constraints with φ2. Then, by multiplying 
IR(θ1

1 ), IR(θ3
1 ), IC(θ2

1 θ1
1 ), IR(θ2

2 ), IR(θ3
2 ), IC(θ1

2 θ2
2 ), and IC(θ3

2 θ2
2 ) by 6, 4, 3, 8.75, 1.25, 4, 

and 1.25 respectively, we obtain that 57.25 ≥ 58.75, a contradiction.
To see how ambiguous transfers work, let � = {φ1, φ2}. Define φ1

1 and φ2
1 below, which are 

agent 1’s component in φ1 and φ2 respectively. The constant c is no less than 12.75.

φ1
1 (θ) θ1

2 θ2
2 θ3

2

θ1
1 20 + 9c −18c 9c

θ2
1 20 − 3c 3 + 6c −3c

θ3
1 20 − 3c 3 + 8c 1 − 12c

φ2
1 (θ) θ1

2 θ2
2 θ3

2

θ1
1 20 − 9c 18c −9c

θ2
1 20 + 3c 3 − 6c 3c

θ3
1 20 + 3c 3 − 8c 1 + 12c

Notice that the BDP property holds for agent 2. It is easy to verify his IR and IC constraints. 
We first notice that the MEU of agent 2 is always zero on path, which establishes his IR con-
straints. When type-θ1

2 agent 2 misreports θ2
2 and θ3

2 respectively, his MEU becomes 51
4 − c

and 19
2 − 9

2c respectively. Similarly, when type-θ2
2 misreports θ1

2 and θ3
2 , the MEU is −17 − 3

7c

and 6
7 − 24

7 c respectively. At last, when type-θ3
2 reports θ1

2 and θ2
2 , his MEU is −19 − 9

5c and 
− 6

5 − 16
5 c. Hence, when c ≥ 12.75, we can verify agent 2’s IC constraints.

As the BDP property fails for agent 1, one may suspect that our mechanism cannot guarantee 
IC of agent 1. However, this is not the case. We can decompose each of the potential transfer 
rule into two parts, a surplus redistribution part η that does not include c and a lottery part ψ that 
is enlarged by the constant c. Both η and ψ satisfy the BB condition. Agent 1’s components in 
the potential transfer rules are φ1

1 = η1 + cψ1 and φ2
1 = η1 − cψ1. We cannot rely on the lottery 

part in ambiguous transfers to incentivize truth-telling of agent 1, since the BDP property fails 
for agent 1. However, as the surplus redistribution part in φ1

1 and φ2
1 , η1, is a VCG transfer, it 

guarantees IC of agent 1 under the private value assumption.
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η1(θ) θ1
2 θ2

2 θ3
2

θ1
1 20 0 0

θ2
1 20 3 0

θ3
1 20 3 1

ψ1(θ) θ1
2 θ2

2 θ3
2

θ1
1 9 −18 9

θ2
1 −3 6 −3

θ3
1 −3 8 −12

We now formally verify agent 1’s IR and IC constraints. When type-θ1
1 agent 1 truthfully 

reports θ1
1 , his MEU is 1

3 . When he misreports θ2
1 or θ3

1 , his MEU decreases to −5 or −11 − 7
3c. 

Similarly, when type-θ2
1 agent 1 truthfully reveals, he obtains MEU of 19

3 . But when misreporting 
θ1

1 and θ3
1 , his MEU decreases to 6 and 6 − 7

3c. By truthfully reporting θ3
1 , agent 1’s MEU is 45

4 . 
Misreporting θ1

1 and θ2
1 leads to the lower MEU of 10 − 9

8c and 89
8 − 3

8c respectively. Agent 1’s IR 
and IC constraints are thus established. Indeed, as long as c ≥ 0, his IC constraints are satisfied. 
This is consistent with the fact that the VCG transfer of agent 1 ensures his IC constraints, rather 
than the lottery parts in the ambiguous transfers.

Hence, q is implementable via the IR and BB mechanism with ambiguous transfers.

4. Extensions

4.1. Relax the common prior assumption

In this section, we study implementation via ambiguous transfers without imposing the as-
sumption that beliefs can be generated by a common prior. We demonstrate with examples that 
ambiguous transfers may implement Bayesian non-implementable allocation rules.

The common prior assumption is used in Parts 2 and 3 of Theorem 3.1. In fact, without 
the assumption, the following example shows that the BDP property is no longer sufficient for 
implementation via an IR and BB mechanism with ambiguous transfers.

Example 4.1. Consider an adaptation of Example 3.2 where each agent has two types. In A =
{x0, x1, x2}, the payoffs of x1 and x2 are presented below. The payoff of x0 is zero to both agents. 
Assume 0 < 16a < B .

u1(x1, θ), u2(x1, θ) θ1
2 θ2

2

θ1
1 a,0 a, a

θ2
1 a,0 a, a

u1(x2, θ), u2(x2, θ) θ1
2 θ2

2

θ1
1 a, a a − 2B,a + B

θ2
1 a, a a − 2B,a + B

The efficient allocation rule is q(θ1
1 , θ1

2 ) = q(θ2
1 , θ1

2 ) = x2 and q(θ1
1 , θ2

2 ) = q(θ2
1 , θ2

2 ) = x1. Let 
the beliefs satisfy p1(θ

1
2 |θ1

1 ) = 0.75, p1(θ
1
2 |θ2

1 ) = 0.25, p2(θ
1
1 |θ1

2 ) = 0.7, and p2(θ
1
1 |θ2

2 ) = 0.3, 
which cannot be generated by a common prior. The BDP property holds for both agents.

Suppose by contradiction that an IR and BB mechanism with ambiguous transfers (q, �)

implements q . By IC(θ2
2 θ1

2 ), we have

inf
φ̃∈�

{a + 0.3φ̃2(θ
1
1 , θ2

2 ) + 0.7φ̃2(θ
2
1 , θ2

2 )} ≥ inf
φ̃∈�

{a + B + 0.3φ̃2(θ
1
1 , θ1

2 ) + 0.7φ̃2(θ
2
1 , θ1

2 )}.

Hence, for all ε > 0, there exists a BB transfer rule φ = (φ1, φ2) = (−φ2, φ2) ∈ � such that

a + 0.3φ2(θ
1, θ2) + 0.7φ2(θ

2, θ2) + ε ≥ a + B + 0.3φ2(θ
1, θ1) + 0.7φ2(θ

2, θ1). (1)
1 2 1 2 1 2 1 2
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We fix this φ for the rest of the example.
Recall from the BB condition, for each φ̃ ∈ �, φ̃1 = −φ̃2. Thus, IR(θ1

1 ) requires

inf
φ̃∈�

{a − 0.75φ̃2(θ
1
1 , θ1

2 ) − 0.25φ̃2(θ
1
1 , θ2

2 )} ≥ 0.

As a result, the transfer rule φ satisfies

a − 0.75φ2(θ
1
1 , θ1

2 ) − 0.25φ2(θ
1
1 , θ2

2 ) ≥ 0. (2)

Similarly, IR(θ2
1 ), IR(θ1

2 ), and IR(θ2
2 ) imply that

IR(θ2
1 ) a − 0.25φ2(θ

2
1 , θ1

2 ) − 0.75φ2(θ
2
1 , θ2

2 ) ≥ 0, (3)

IR(θ1
2 ) a + 0.7φ2(θ

1
1 , θ1

2 ) + 0.3φ2(θ
2
1 , θ1

2 ) ≥ 0, (4)

IR(θ2
2 ) a + 0.3φ2(θ

1
1 , θ2

2 ) + 0.7φ2(θ
2
1 , θ2

2 ) ≥ 0. (5)

Multiply expressions (1), (2), (3), (4), and (5) by 4, 18, 14, 21, and 11 respectively, add them up, 
and let ε go to zero. It follows that 64a − 4B ≥ 0, a contradiction with 0 < 16a < B .

Hence, q is not implementable via an IR and BB mechanism with ambiguous transfers.

A few papers in the literature have documented results related to efficiency maximization 
without the common prior assumption. Among them, Bergemann et al. (2012) study the imple-
mentation problem without the BB condition, Smith (2010) compares the welfare of two public 
good provision mechanisms, and Börgers et al. (2015) provide a sufficient condition under which 
agents’ equilibrium interim payoffs can be arbitrarily increased. The current section provides a 
general condition under which the first-best efficiency can be guaranteed by an IR and BB mech-
anism without imposing the common prior assumption, which is new to the literature.

We introduce a notation here. For agents i �= j and types θi and θj , by slightly abusing nota-
tions, we let pj (θi, ·|θj ) be the |�−i−j |-dimensional vector 

(
pj (θi, θ−i−j |θj )

)
θ−i−j ∈�−i−j

when 
N ≥ 3, and be the number pj(θi |θj ) when N = 2.

Definition 4.1. The profile of beliefs (pj )j∈I satisfies the Property I for agent i if there do not 
exist types θ̄i �= θ̂i , a prior μ ∈ �(�), and constants C̄ > 0 and Ĉ > 1 such that:

μ(θj ) > 0 and μ(θ−j |θj ) = pj (θ−j |θj ) for all (j, θj ) �= (i, θ̂i ) and θ−j (6)

and

Ĉpi(θj , ·|θ̂i ) = pi(θj , ·|θ̄i ) + C̄
pi(θj |θ̄i )

pj (θ̄i |θj )
pj (θ̂i , ·|θj ) for all j �= i and θj . (7)

The profile of beliefs (pj )j∈I satisfies Property II for agent i if there do not exist types 
θ̄i �= θ̂i , a prior μ ∈ �(�), and constants C̄ ≥ 1 and Ĉ > 1 such that

μ(θj ) > 0 and μ(θ−j |θj ) = pj (θ−j |θj ) for all (j, θj ) �= (i, θ̂i ) and θ−j (8)

and
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Ĉpi(θj , ·|θ̂i ) = pi(θj , ·|θ̄i ) + C̄
pi(θj |θ̄i )

pj (θ̄i |θj )
pj (θ̂i , ·|θj ) for all j �= i and θj . (9)

Notice that expressions (6) and (8) are identical, and so are expressions (7) and (9). Hence, 
in the definitions of Properties I and II, the only difference is the size of C̄. It is easy to see that 
when the profile of beliefs (pj )j∈I satisfies Property I for agent i, it also satisfies Property II for 
agent i.

From expressions (6) through (9), one can see that whether the profile of beliefs (pj)j∈I

satisfies Property I (or Property II) for agent i relies on the entire profile of beliefs (pj )j∈I , 
instead of pi alone. Such a feature of Property I/II is different from the BDP property, since 
whether the BDP property holds for agent i only depends on pi . For convenience, we may also 
say (pj )j∈I satisfies the BDP property for agent i, but pj should be viewed as free variables for 
any j �= i in this statement.

When the profile of beliefs (pj )j∈I does not satisfy Property I for agent i, expressions (6) and 
(7) need to be satisfied simultaneously. Expression (6) requires that the belief of each type-θj

agent j , except the one of type-θ̂i agent i, can be obtained by updating μ. When agents’ beliefs 
have full support and expression (6) holds, expression (7) becomes:

Ĉ
pi(θ−i |θ̂i )

pi(θ−i |θ̄i )
= 1 + C̄

μ(θ̂i , θ−i )

μ(θ̄i , θ−i )
,∀θ−i ∈ �−i .

According to this expression, the ratio of i’s beliefs under types θ̂i and θ̄i has a linear relationship 
with the ratio of the prior μ at types θ̂i and θ̄i .10

We check the two properties for each agent in Example 4.1 below.

Example 4.1 (continued). When N = 2, we can replace expression (7) (and (9)) with

Ĉ
pi(θj |θ̂i )

pi(θj |θ̄i )
= 1 + C̄

pj (θ̂i |θj )

pj (θ̄i |θj )
,∀θj ∈ �j . (10)

For agent i = 1, we claim that there do not exist types θ̄1 �= θ̂1 and constants C̄ > 0, Ĉ > 1
such that expression (10) holds. Indeed, if one conjectures that θ̂1 = θ1

1 , then expression (10)
implies Ĉ( 0.75

0.25 , 0.25
0.75 ) = (1,1) + C̄( 0.7

0.3 , 0.3
0.7 ). This further requires that C̄ = − 21

4 and Ĉ = − 15
4 . 

If we conjecture that θ̂1 = θ2
1 instead, then according to expression (10), Ĉ( 0.25

0.75 , 0.75
0.25 ) = (1,1) +

C̄( 0.3
0.7 , 0.7

0.3 ). Again, it follows that C̄ = − 21
4 Ĉ = − 15

4 . Neither conjecture leads to C̄ > 0 and 
Ĉ > 1. Hence, the profile of beliefs satisfies Property I for agent 1. Since Property II is weaker 
than I, it follows that the profile of beliefs also satisfies Property II for agent 1.

However, the profile of beliefs satisfies neither Property I nor Property II for agent 2. To see 
this, let (i, θ̄i , θ̂i ) = (2, θ2

2 , θ1
2 ), μ(θ1

1 , θ1
2 ) = 27

64 , μ(θ1
1 , θ2

2 ) = 9
64 , μ(θ2

1 , θ1
2 ) = 7

64 , μ(θ2
1 , θ2

2 ) = 21
64 , 

C̄ = 15
4 , and Ĉ = 21

4 . Since expressions (6) through (9) would hold, the profile of beliefs does 
not satisfy Property I or Property II for agent 2.

One may ask if it is demanding to require the profile of beliefs to satisfy Properties I and II for 
agent i. The answer is no when N = 2 and agent j �= i has at least three types, or when N ≥ 3. 
When N = 2, recall that expressions (6) and (10) are equivalent. There are |�j | linear equations 

10 Recall that when N ≥ 3, Assumption 2.1 imposes a weaker requirement than full support beliefs.
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in expression (10). With |�j | > 2, it is generically impossible to find C̄ and Ĉ satisfying all 
|�j | equations and thus almost all profiles of beliefs (pi, pj ) satisfy Properties I and II for 
agent i. When N ≥ 3, under almost all profiles of beliefs (pl)l∈I , there exist two other agents 
j and k, such that there is no μ ∈ �(�) satisfying μ(θ−j |θj ) = pj (θ−j |θj ) for all θj , θ−j and 
μ(θ−k|θk) = pk(θ−k|θk) for all θk, θ−k . Hence, almost all profiles of beliefs satisfy Properties I 
and II for agent i when N ≥ 3.

To see the connection between the BDP property, Property I, and Property II, we first present 
the following lemma (proved in Online Appendix B). In the special case that beliefs can be 
generated by a common prior, the three properties are equivalent.

Lemma 4.1. Suppose the profile of beliefs (pj )j∈I can be generated by a common prior p. For 
each agent i ∈ I , the following three statements are equivalent:

1. the BDP property holds for agent i;
2. the profile of beliefs (pj )j∈I satisfies Property I for agent i;
3. the profile of beliefs (pj )j∈I satisfies Property II for agent i.

However, when we do not impose the common prior assumption, there is no implication 
relationship between the three properties except that Property I implies Property II. In Online 
Appendix C, we provide a diagram and examples to support this claim.

In view of Lemma 4.1, the following proposition generalizes Parts 2 and 3 of Theorem 3.1. 
Since Theorem 3.1 is more elegant and only involves the BDP property in the characterization, 
we leave it as the main result and Proposition 4.1 as an extension.

Proposition 4.1. Given a profile of beliefs (pk)k∈I ,

1. if there exists an agent i ∈ I for whom the profile of beliefs fails to satisfy Property II or the 
BDP property, then there exists a profile of utility functions under which an efficient allocation 
rule is not implementable via an IR and BB mechanism with ambiguous transfers; if the profile 
of beliefs satisfies both Property I and the BDP property for all agents, then any ex-post 
efficient allocation rule under any profile of utility functions is implementable via an IR and 
BB mechanism with ambiguous transfers;

2. if there exist two agents i �= j such that the profile of beliefs fails to satisfy Property II for i
and fails to satisfy the BDP property for j , then there exists a profile of private value utility 
functions under which an ex-post efficient allocation rule is not implementable via an IR and 
BB mechanism with ambiguous transfers; if there do not exist two agents i �= j such that the 
profile of beliefs fails to satisfy Property I for i and fails to satisfy the BDP property for j , 
then any ex-post efficient allocation rule under any profile of private value utility functions is 
implementable via an IR and BB mechanism with ambiguous transfers.

The proof is relegated to Online Appendix B.
We remark that when the BDP property holds for all agents, the sufficient conditions for 

implementation in Part 2 of the proposition hold.11 Hence, when the BDP property holds for all 
agents, whether beliefs can be generated by a common prior or not, efficient implementation via 

11 This is because there does not exist an agent j such that the BDP property fails for j .
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ambiguous transfers can be guaranteed under private value environments. This result is used in 
Example 4.3.

In Example 4.2, the sufficient conditions in Part 1 of Proposition 4.1 hold. As a result, any 
efficient allocation rule is implementable via ambiguous transfers. Since we find an efficient allo-
cation rule that is not implementable via Bayesian mechanisms, we demonstrate that ambiguous 
transfers may perform better than Bayesian mechanisms.

Example 4.2. Under the following profile of beliefs (p1, p2), the efficient allocation rule q is not 
Bayesian implementable, but it is implementable via ambiguous transfers.

p1(θ2|θ1) θ1
2 θ2

2 θ3
2

θ1
1

7
28

12
28

9
28

θ2
1

13
28

12
28

3
28

p2(θ1|θ2) θ1
2 θ2

2 θ3
2

θ1
1

1
3

1
2

2
3

θ2
1

2
3

1
2

1
3

The feasible set of outcomes, the payoffs, and the efficient allocation rule are identical to 
those in Example 3.2, except that 0 < 8.5a < B is imposed. Suppose by contradiction that there 
exists a BB Bayesian transfer rule φ = (φ1, φ2) = (−φ2, φ2) : � → R2 implementing q . As in 
Example 3.2, by multiplying IR(θ1

1 ), IR(θ2
1 ), IR(θ1

2 ), IR(θ2
2 ), IR(θ3

2 ), IC(θ1
1 θ2

1 ), IC(θ2
1 θ1

1 ), 
IC(θ1

2 θ2
2 ), IC(θ1

2 θ3
2 ), IC(θ2

2 θ1
2 ), and IC(θ3

2 θ2
2 ) by 7, 7, 3, 8, 3, 3.5, 3.5, 3, 3, 4, and 3 respec-

tively, and summing up, we obtain 0 ≥ 4B − 34a, a contradiction. Hence, q is not Bayesian 
implementable.

It is easy to see that the BDP property holds for both agents.
We demonstrate below that the profile of beliefs satisfies Property I for agent 1 first. Recall that 

when N = 2, expression (7) is equivalent to expression (10). Consider (i, θ̄i , θ̂i ) = (1, θ1
1 , θ2

1 ), 
there do not exist constants C̄ > 0 and Ĉ > 1 such that Ĉ( 13

7 , 1, 13 ) = (1, 1, 1) + C̄(2, 1, 0.5). A 
symmetric argument applies to (i, θ̄i , θ̂i ) = (1, θ2

1 , θ1
1 ).

To see the profile of beliefs satisfies Property I for agent 2, notice that for all θ̂2 ∈ �2, there 
never exists μ such that expression (6) holds.

By Part 1 of Proposition 4.1, q is implementable via an IR and BB mechanism with ambigu-
ous transfers. For example, we can consider a BB transfer rule φ1, where agent 1’s component 
φ1

1(θ) = 0 for all θ ∈ �. In the second BB transfer rule φ2, agent 1’s component is defined by 
φ2

1(θ1
1 , θ1

2 ) = 4B , φ2
1(θ1

1 , θ2
2 ) = − 13

6 B , φ2
1(θ1

1 , θ3
2 ) = 0, φ2

1(θ2
1 , θ1

2 ) = −2B , φ2
1(θ2

1 , θ2
2 ) = 13

6 B , 
and φ2

1(θ2
1 , θ3

2 ) = 0. One can check that the BB mechanism with ambiguous transfers (q, � =
{φ1, φ2}) satisfies the conditions of IR and IC.

In the following private value bilateral trading example, there exists an efficient allocation rule 
q that is not Bayesian implementable. However, the sufficient conditions in Part 2 of Proposi-
tion 4.1 hold, and thus q is implementable via ambiguous transfers. Hence, ambiguous transfers 
may perform better than Bayesian mechanisms even when we confine the analysis to private 
value environments.

Example 4.3. Agent 1 is the seller of a unit of indivisible good and 2 is the buyer. Outcomes in 
A = {x0, x1} are feasible. The outcome x0 represents no trade. The payoffs of x1, trading, are 
given below. The efficient allocation rule is q(θ1, θ2) = x0 and q(θ) = x1 for all other θ .
1 2
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u1(x1, θ), u2(x1, θ) θ1
2 θ2

2

θ1
1 -3.5, 4 -3.5, 1

θ2
1 -0.5, 4 -0.5, 1

Let the beliefs satisfy p1(θ
1
2 |θ1

1 ) = 0.3, p1(θ
1
2 |θ2

1 ) = 0.25, p2(θ
1
1 |θ1

2 ) = 0.3, and p2(θ
1
1 |θ2

2 ) =
0.2, which cannot be generated by a common prior.

Suppose by way of contradiction that there exists an IR and BB Bayesian transfer rule φ =
(−φ2, φ2) : � → R2 that implements q . As in Example 3.2, we can multiply IR(θ1

1 ), IC(θ2
1 θ1

1 ), 
IC(θ1

2 θ2
2 ), IR(θ2

2 ), and IC(θ2
2 θ1

2 ) by 10, 8, 4, 10, and 1 respectively and add them up. This gives 
us 0 ≥ 0.9, a contradiction. Therefore, q is not Bayesian implementable.

However, notice that the BDP property holds for both agents. According to the remark after 
Proposition 4.1, q is implementable via an IR and BB mechanism with ambiguous transfers. 
For example, a mechanism with ambiguous transfer rules (q, � = {φ1, φ2}) can fulfill the goal, 
where agent 1’s component in φ1 is defined by φ1

1(θ1
1 , θ1

2 ) = 4, φ1
1(θ1

1 , θ2
2 ) = 0, φ1

1(θ2
1 , θ1

2 ) =
4, φ1

1(θ2
1 , θ2

2 ) = 1, and his component in φ2 is given by φ2
1(θ1

1 , θ1
2 ) = −38, φ2

1(θ1
1 , θ2

2 ) = 24, 
φ2

1(θ2
1 , θ1

2 ) = 22, and φ2
1(θ2

1 , θ2
2 ) = −5.

4.2. Other ambiguity aversion preferences

To check the robustness of our result, we look at alternative preferences of ambiguity aversion 
in this subsection. One is the α-maxmin expected utility (α-MEU) of Ghirardato and Marinacci 
(2002), and the other is the smooth ambiguity aversion preferences of Klibanoff et al. (2005). 
When agents have these preferences, the mechanism designer may still benefit from introducing 
ambiguous transfers.

Ghirardato and Marinacci (2002) introduce the α-MEU, which is a generalization of the MEU. 
Under an environment described in Section 2, a type-θi agent i with α-maxmin expected utility
has the following interim utility level from participating and reporting truthfully when � is the 
set of ambiguous transfers:

α inf
φ∈�

{
∑

θ−i∈�−i

ui

(
q(θi, θ−i ), (θi, θ−i )

)
pi(θ−i |θi) +

∑
θ−i∈�−i

φi(θi, θ−i )pi(θ−i |θi)}

+ (1 − α) sup
φ∈�

{
∑

θ−i∈�−i

ui

(
q(θi, θ−i ), (θi, θ−i )

)
pi(θ−i |θi) +

∑
θ−i∈�−i

φi(θi, θ−i )pi(θ−i |θi)},

where α ∈ [0, 1]. An agent is said to be ambiguity-averse if α > 0.5. The MEU preferences 
adopted in earlier sections correspond to the case α = 1.

Alternatively, an agent i with smooth ambiguity aversion has a utility function of∫
π∈�(�)

v

( ∫
φ∈�

( ∑
θ−i∈�−i

[ui

(
q(θi, θ−i ), (θi, θ−i )

) + φi(θi, θ−i )]pi(θ−i |θi)
)
dπ

)
dμ,

where for each distribution π ∈ �(�), π(φ) measures the subjective density that φ is the true 
transfer rule chosen by the mechanism designer; for each distribution μ ∈ �(�(�)), μ(π) mea-
sures the subjective density that π ∈ �(�) is the right density function the mechanism designer 
uses to choose the transfer rule; v : R → R is a strictly increasing function that characterizes 
ambiguity attitude, where a strictly concave v implies ambiguity aversion.
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Under the α-MEU preferences with α > 0.5 or the smooth ambiguity aversion preferences 
with a strictly concave v, the sufficiency part of Theorem 3.1 still holds. We can construct am-
biguous transfers in the same way as those under the MEU preferences except for choosing a 
potentially different multiplier c.

As an illustration, we demonstrate with Example 3.2. Let v be a strictly increasing and strictly 
concave function. Consider the same transfers as φ1 and φ2 except for a potentially different 
multiplier c. Then it is easy to verify individual rationality and budget balance. Each π ∈ �(�)

is a Bernoulli distribution between φ1 and φ2. Let μ be the uniform distribution over �(�) for 
example. As an illustration, we check IC(θ2

2 θ1
2 ). Truth-telling always gives agent 2 an expected 

utility of

1∫
0

v(μa + (1 − μ)a)dμ = v(a).

By misreporting from θ2
2 to θ1

2 , agent 2 gets an interim utility of

1∫
0

v
(
μ(a + B + c) + (1 − μ)(a + B − c)

)
dμ.

For v sufficiently concave or c sufficiently large, the above expression has a value no more than 
v(a), implying that IC(θ2

2 θ1
2 ) holds. One can verify other IC constraints as well.

5. Conclusion

This paper introduces ambiguous transfers to study full surplus extraction and implementation 
of an efficient allocation rule via an individually rational and budget-balanced mechanism. We 
show that the BDP property is necessary and sufficient in both problems, which is weaker than the 
necessary and sufficient condition for full surplus extraction and implementation via Bayesian 
mechanisms. Hence, ambiguous transfers can go beyond Bayesian mechanisms. In particular, 
under two-agent settings, ambiguous transfers offer a resolution to overcome the negative results 
on two-agent IR and BB implementation problems generically.

Appendix A

We introduce a few notations. For any positive integer K , the vector 0 ∈ RK is a vector of K
zeros. Let RK+ denote {v ∈ RK |vk ≥ 0, ∀k = 1, ..., K}, i.e., the set of all non-negative vectors of 
dimension K . The set of all non-negative and non-zero vectors of dimension K is denoted by 
RK+\{0}.

Lemma A.1. Given a profile of beliefs (pj )j∈I , if the BDP property holds for an agent i ∈ I , 

then for all θ̄i , θ̂i ∈ �i with θ̄i �= θ̂i , there exists a transfer rule ψθ̄i θ̂i : � →RN such that

1.
∑

θ−j ∈�−j

ψ
θ̄i θ̂i

j (θj , θ−j )pj (θ−j |θj ) = 0 for all j ∈ I and θj ∈ �j ;

2.
∑

ψ
θ̄i θ̂i

i (θ̂i , θ−i )pi(θ−i |θ̄i ) < 0.

θ−i∈�−i
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Proof. We first define vectors pθj θ ′
j

for all j ∈ I and θj , θ
′
j ∈ �j . Each pθj θ ′

j
has N × |�| di-

mensions and every dimension corresponds to an agent and a type profile. For any j ∈ I and 
θj , θ ′

j ∈ �j , whenever there exists θ−j ∈ �−j such that a dimension of pθj θ
′
j

corresponds to 

agent j and type profile (θ ′
j , θ−j ), let this dimension be pj(θ−j |θj ). Thus, we have defined 

|�−j | dimensions of the vector pθj θ
′
j
. Let all other dimensions of pθj θ

′
j

be 0.12

Suppose by way of contradiction that the BDP property holds for agent i, but there exist 
different types θ̄i , θ̂i ∈ �i , such that no ψθ̄i θ̂i satisfies the two conditions stated in Lemma A.1. 
By Fredholm’s theorem of the alternative, there exist coefficients (aθj

)j∈I,θj ∈�j
such that

p
θ̄i θ̂i

=
∑
j∈I

∑
θj ∈�j

aθj
pθj θj

.

By focusing on each dimension of p
θ̄i θ̂i

that corresponds to agent i and type profile (θ̂i , θ−i ), 

we know that pi(θ−i |θ̄i ) = a
θ̂i
pi(θ−i |θ̂i ) for all θ−i ∈ �−i . Adding this expression over θ−i ∈

�−i yields a
θ̂i

= 1. Hence, pi(·|θ̄i ) = pi(·|θ̂i ), contradicting the BDP property. �
Lemma A.2. For any K × K matrix X = (x

kk̃
) whose diagonal elements are all negative, there 

exists a vector λ ∈RK+\{0} such that 
∑K

k̃=1
x
kk̃

λ
k̃
�= 0 for all k = 1, ..., K .

Proof. We prove the result by induction.
When K = 1. Pick an arbitrary λ1 > 0. As x11 < 0, the statement holds for 1.
Suppose the statement holds for K −1, where K ≥ 2. Consider any K ×K matrix X with neg-

ative diagonal elements. By the supposition for the northwest K − 1 by K − 1 block, there exists 
a non-zero vector (λ1, ..., λK−1) ∈ RK−1+ \{0} such that 

∑K−1
k̃=1

x
kk̃

λ
k̃
�= 0 for all k = 1, ..., K −1.

Case 1. Suppose 
∑K−1

k̃=1
x
Kk̃

λ
k̃
�= 0. Let λK = 0, and thus the statement holds for K .

Case 2. Suppose 
∑K−1

k̃=1
x
Kk̃

λ
k̃
= 0 and there exists k0 ∈ {1, ..., K − 1} such that xKk0λk0 �= 0. 

Let (λ′
1, ..., λ

′
K−1) = (λ1, ..., λk0−1, λk0 + ε, λk0+1, ..., λK−1) for ε > 0. Then 

∑K−1
k̃=1

x
Kk̃

λ′
k̃
�= 0. 

When ε is sufficiently close to zero, as 
∑K−1

k̃=1
x
kk̃

λ
k̃

�= 0 for all k = 1, ..., K − 1, we also 

have 
∑K−1

k̃=1
x
kk̃

λ′
k̃

�= 0 for all k = 1, ..., K − 1. Thus, we can replace (λ1, ..., λK−1) with 
(λ′

1, ..., λ
′
K−1) and go back to Case 1.

Case 3. Suppose x
Kk̃

λ
k̃

= 0 for all k̃ = 1, ..., K − 1. Pick any λK > 0 such that λK �= −∑K−1
k̃=1

x
kk̃

λ
k̃

xkK
for all k = 1, ..., K − 1 with xkK �= 0. The statement thus holds for K . �

Lemma A.3. Given a profile of beliefs (pi)i∈I , if the BDP property holds for all agents, then 
there exists a transfer rule ψ : � → RN such that

1.
∑

θ−i∈�−i

ψi(θi, θ−i )pi(θ−i |θi) = 0 for all i ∈ I and θi ∈ �i ;

12 As an illustration, consider I = {1, 2} and � = {(θ1
1 , θ1

2 ), (θ1
1 , θ2

2 ), (θ2
1 , θ1

2 ), (θ2
1 , θ2

2 )}. For each pθj θ ′
j

, its first (last) 

four dimensions correspond to agent 1 (agent 2) and the type profile (θ1
1 , θ1

2 ), (θ1
1 , θ2

2 ), (θ2
1 , θ1

2 ), and (θ2
1 , θ2

2 ) respec-

tively. Then for example, p 2 1 = (0, 0, 0, 0, p2(θ1|θ2), 0, p2(θ2|θ2), 0).

θ2 θ2 1 2 1 2
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2.
∑

θ−i∈�−i

ψi(θ̂i , θ−i )pi(θ−i |θ̄i ) �= 0 for all i ∈ I and θ̄i , θ̂i ∈ �i with θ̄i �= θ̂i .

Proof. Let K be the cardinality of the set K = {(θ̄i , θ̂i )|i ∈ I, θ̄i , θ̂i ∈ �i, θ̄i �= θ̂i}. Let f : K →
{1, ..., K} be a one-to-one mapping, which allows us to index the elements of K.

For all k, k̃ ∈ {1, ..., K} (k, k̃ may be equal), where f −1(k) = (θ̄i , θ̂i ) and f −1(k̃) = ( ˜̄θj , 
˜̂
θj ), 

define a number x
kk̃

= ∑
θ−i∈�−i

ψ
˜̄θj

˜̂
θj

i (θ̂i , θ−i )pi(θ−i |θ̄i ), where each transfer rule ψ
˜̄θj

˜̂
θj is de-

fined and proved to exist in Lemma A.1. Recall the second condition of ψ
˜̄θj

˜̂
θj implies that x

k̃k̃
< 0

for all k̃ = 1, ..., K . Then, X ≡ (x
kk̃

) is a K × K matrix with negative diagonal elements. By 
Lemma A.2, there exists λ ∈ RK+\{0} such that 

∑K

k̃=1
x
kk̃

λ
k̃
�= 0 for all k = 1, ..., K . Hence, for 

all (θ̄i , θ̂i ) ∈ K,

K∑
k̃=1

[
∑

θ−i∈�−i

ψ
f −1(k̃)
i (θ̂i , θ−i )pi(θ−i |θ̄i )]λk̃

=
∑

θ−i∈�−i

[
K∑

k̃=1

λ
k̃
ψ

f −1(k̃)
i (θ̂i , θ−i )]pi(θ−i |θ̄i )

�= 0. (11)

Define a new transfer rule ψ by making a linear combination of the rules (ψf−1(k̃))
k̃=1,...,K

such 

that ψ ≡ ∑K

k̃=1
λ

k̃
ψf −1(k̃). Thus, by expression (11), the transfer rule ψ satisfies the second 

condition of this lemma. The first condition of this lemma also holds for ψ because each ψf −1(k̃)

satisfies this condition. �
Lemma A.4. Given a profile of beliefs that can be generated by a common prior p, if the BDP 
property holds for agent i, then for all θ̄i , θ̂i ∈ �i with θ̄i �= θ̂i , there exists a transfer rule ψθ̄i θ̂i :
� → RN such that,

1.
∑
j∈I

ψ
θ̄i θ̂i

j (θ) = 0 for all θ ∈ �;

2.
∑

θ−j ∈�−j

ψ
θ̄i θ̂i

j (θj , θ−j )pj (θ−j |θj ) = 0 for all j ∈ I and θj ∈ �j ;

3.
∑

θ−i∈�−i

ψ
θ̄i θ̂i

i (θ̂i , θ−i )pi(θ−i |θ̄i ) < 0.

Proof. For each θ ∈ �, define a N × |�|-dimensional vector eθ below. Every dimension corre-
sponds to an agent and a type profile. Let all dimensions of eθ that correspond to an agent and 
the type profile θ be 1. Let all other dimensions of eθ be 0.13 Vectors (pθj θ ′

j
)j∈I,θj ,θ ′

j ∈�j
have 

been defined in Lemma A.1.
Suppose by way of contradiction that the BDP property holds for agent i, but there exist types 

θ̄i �= θ̂i , such that no transfer rule ψθ̄i θ̂i satisfies the three conditions. By Fredholm’s theorem of 
the alternative, there exist coefficients (aθj

)j∈I,θj ∈�j
and (bθ )θ∈� such that

13 As an illustration, recall the same example as in footnote 12. One has e 2 1 = (0, 0, 1, 0, 0, 0, 1, 0).

(θ1 ,θ2 )
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p
θ̄i θ̂i

=
∑
j∈I

∑
θj ∈�j

aθj
pθj θj

+
∑
θ∈�

bθeθ . (12)

Fix any agent j �= i. All elements of p
θ̄i θ̂i

corresponding to agent j are zero. All those corre-

sponding to agent i and θ̄i are zero. Those corresponding to agent i and θ̂i may not be zero. The 
three observations, along with expression (12), imply that

0 = aθj
pj (θ−j |θj ) + bθ ,∀θ ∈ �, (13)

0 = aθ̄i
pi(θ−i |θ̄i ) + bθ̄i ,θ−i

,∀θ−i ∈ �−i , (14)

pi(θ−i |θ̄i ) = a
θ̂i
pi(θ−i |θ̂i ) + b

θ̂i ,θ−i
,∀θ−i ∈ �−i . (15)

Choosing θi = θ̄i in expression (13) and canceling bθ̄i ,θ−i
in expressions (13) and (14) yield 

aθj
pj (θ̄i , θ−i−j |θj ) = aθ̄i

pi(θ−i |θ̄i ) for all θ−i .14 Since beliefs can be generated by a common 

prior p, we further have that aθj

p(θ̄i ,θ−i )
p(θj )

= aθ̄i

p(θ̄i ,θ−i )

p(θ̄i )
for all θ−i ∈ �−i . Summing across all 

θ−i ∈ �−i yields aθj
= aθ̄i

p(θj )

p(θ̄i )
for all θj ∈ �j .

By choosing θi = θ̂i in expression (13) and plugging in aθj
derived in the previous paragraph, 

we know b
θ̂i ,θ−i

= − aθ̄i

p(θj )

p(θ̄i )
pj (θ̂i , θ−i−j |θj ) = −aθ̄i

p(θ̂i )

p(θ̄i )
pi(θ−i |θ̂i ) for all θ−i .

Plugging b
θ̂i ,θ−i

above into expression (15) yields pi(θ−i |θ̄i ) = (a
θ̂i

− aθ̄i

p(θ̂i )

p(θ̄i )
)pi(θ−i |θ̂i ) for 

all θ−i . Hence, a
θ̂i

− aθ̄i

p(θ̂i )

p(θ̄i )
= 1 and pi(·|θ̄i ) = pi(·|θ̂i ), a contradiction. �

Lemma A.5. Given a profile of beliefs that can be generated by a common prior p, if the BDP 
property holds for all agents, then there exists a transfer rule ψ : � → RN such that

1.
∑
i∈I

ψi(θ) = 0 for all θ ∈ �;

2.
∑

θ−i∈�−i

ψi(θi, θ−i )pi(θ−i |θi) = 0 for all i ∈ I and θi ∈ �i ;

3.
∑

θ−i∈�−i

ψi(θ̂i , θ−i )pi(θ−i |θ̄i ) �= 0 for all i ∈ I and θ̄i , θ̂i ∈ �i with θ̄i �= θ̂i .

Proof. One can construct a linear combination of transfer rules developed in Lemma A.4 such 
that the combination satisfies the three conditions here. The detailed argument is omitted as it is 
analogous to Lemma A.3. �
Proof of Theorem 3.1. Necessity of Parts 1 and 2. Suppose there exists i ∈ I and θ̄i �= θ̂i such 
that pi(·|θ̄i ) = pi(·|θ̂i ). Consider an adaptation of the utility functions constructed by Kosenok 
and Severinov (2008). Let the set of feasible outcomes be A = {x0, x1, x2}, where agents’ payoffs 
of consuming x0 are zero. The payoffs for agent i and all j �= i to consume x1 and x2 are given 
below with 0 < a < B . Note that for each agent in the environment, his payoff from x1 and x2 is 
constant for all θ−i ∈ �−i .

14 When N = 2, this expression abuses notations slightly as the left-hand side should be aθ pj (θ̄i |θj ).

j
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ui

(
x1, (θi , θ−i )

)
uj

(
x1, (θi , θ−i )

)
ui

(
x2, (θi , θ−i )

)
uj

(
x2, (θi , θ−i )

)
θi = θ̄i a a a+B a-2B

θi = θ̂i 0 a a a

θi �= θ̄i , θ̂i a a 0 a

The efficient allocation rule is q(θ) = x2 if θi = θ̂i and q(θ) = x1 elsewhere.
Suppose by way of contradiction that full surplus extraction can be achieved by a mechanism 

with ambiguous transfers (q, �). By IC(θ̄i θ̂i ) and IC(θ̂i θ̄i ),

inf
φ∈�

{a +
∑

θ−i∈�−i

φi(θ̄i , θ−i )pi(θ−i |θ̄i )} ≥ inf
φ∈�

{a + B +
∑

θ−i∈�−i

φi(θ̂i , θ−i )pi(θ−i |θ̄i )},

inf
φ∈�

{a +
∑

θ−i∈�−i

φi(θ̂i , θ−i )pi(θ−i |θ̂i )} ≥ inf
φ∈�

{0 +
∑

θ−i∈�−i

φi(θ̄i , θ−i )pi(θ−i |θ̂i )}.

Recall that pi(·|θ̄i ) = pi(·|θ̂i ). Adding these two inequalities gives 2a ≥ a + B , a contradiction. 
Therefore, the condition that the BDP property holds for all agents is necessary to guarantee full 
surplus extraction via a mechanism with ambiguous transfers.

To prove that the same condition is necessary for IR and BB implementation via a mechanism 
with ambiguous transfers, we can adopt the same argument.

Necessity of Part 3. By relabeling the indices, we assume without loss of generality that 
agent 1 has identical beliefs under θ1

1 and θ2
1 , that agent 2 has identical beliefs under θ1

2 and 
θ2

2 , and that |�2| ≥ |�1|. For each agent i, let θi and θ−i be generic elements of �i and �−i . 
For convenience, θm

1 and θn
2 are also used to represent generic elements of �1 and �2. To avoid 

introducing additional notations, we ignore any notation θ−1−2 if N = 2. Now we construct a 
profile of private value utility functions such that an efficient allocation rule is not implementable 
via an IR and BB mechanism with ambiguous transfers. This would establish the necessity of the 
condition that at least N − 1 agents satisfy the BDP property.

Let agent 1 own a unit of private good and all others be potential buyers. The set of feasible 
outcomes is A = {x0, x2

1 , ..., xn
1 }. The outcome x0 means no trade. For each i �= 1, xi

1 means that 
trade occurs and that agent i receives the good.

For each buyer i �= 1, vi(θi) represents agent i’s private value of receiving the good, i.e., 
ui(x

i
1, θi) = vi(θi). When trading, type-θ1 agent 1 (seller) incurs a cost of production v1(θ1) < 0. 

Thus, u1(x
i
1, θ1) = v1(θ1). For any other potential buyer j �= i and j �= 1 who does not receive 

the good from such a trade, agent j ’s utility is zero, i.e., uj (x
i
1, θj ) = 0. The outside option, no 

trade, gives all agents zero utility. Hence, ui(x0, θi) = 0 for all i ∈ I .
Suppose the private value of trading follows the ranking v2(θ

1
2 ) > −v1(θ

1
1 ) > v2(θ

2
2 ) >

−v1(θ
2
1 ) > ... > v2(θ

|�1|
2 ) > −v1(θ

|�1|
1 ) > 0. Furthermore, let −v1(θ

|�1|
1 ) > vi(θi) > 0 for all 

vi(θi) that haven’t been ranked.
According to the ranking above, the efficient allocation rule is given by q(θ) = x2

1 if v1(θ
m
1 ) +

v2(θ
n
2 ) > 0, and q(θ) = x0 otherwise. Thus, agent 1 should either sell the good to agent 2 or not 

sell it to anyone. Note that v1(θ
m
1 ) + v2(θ

n
2 ) �= 0 by construction.

Suppose by way of contradiction that an IR and BB mechanism with ambiguous transfers, 
denoted by M = (q, �), implements q . By the IR condition, for each i ∈ I and θi , type-θi agent 
i’s MEU from participation is Uθi

≥ 0. Hence,

inf
φ∈�

{
∑

ui(q(θi, θ−i ), θi)pi(θ−i |θi) +
∑

φi(θi, θ−i )pi(θ−i |θi)} = Uθi
≥ 0.
θ−i∈�−i θ−i∈�−i
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This further implies that for each φ ∈ �, i ∈ I , and θi ∈ �i ,∑
θ−i∈�−i

φi(θi, θ−i )pi(θ−i |θi) ≥ Uθi
−

∑
θ−i∈�−i

ui(q(θi, θ−i ), θi)pi(θ−i |θi). (16)

We fix any φ ∈ � now. For each i and θi , multiply the above inequality by p(θi). Then sum 
across all i and θi . By the common prior assumption and the BB condition, the left-hand side of 
the aggregated inequality is zero. Hence, the aggregated expression is

0 ≥
∑
i∈I

∑
θi∈�i

p(θi)Uθi
+

∑
m

p(θm
1 )

( − v1(θ
m
1 )

∑
n≤m

p(θn
2 |θm

1 )
)

+
∑
n

p(θn
2 )

( − v2(θ
n
2 )

∑
m≥n

p(θm
1 |θn

2 )
)
. (17)

From IC(θ2
1 θ1

1 ), we know

U2
1 ≥ inf

φ∈�
{v1(θ

2
1 )p(θ1

2 |θ2
1 ) +

∑
θ−1

φ1(θ
1
1 , θ−1)p(θ−1|θ2

1 )}.

Thus, for each ε > 0, there exists φ1 ∈ � satisfying

−
∑
θ−1

φ1
1(θ1

1 , θ−1)p1(θ−1|θ2
1 ) + ε ≥ −U2

1 + v1(θ
2
1 )p(θ1

2 |θ2
1 ).

Notice that p1(·|θ1
1 ) = p1(·|θ2

1 ). Add the above expression and (16), where i = 1, θi = θ1
1 , and 

φ = φ1. Then, let ε go to zero. We obtain that

Uθ2
1

≥ Uθ1
1

+ (v1(θ
2
1 ) − v1(θ

1
1 ))p(θ1

2 |θ1
1 ). (18)

Similarly, from IC(θ1
2 θ2

2 ), expression (16) with i = 2 and θi = θ2
2 , and p2(·|θ1

2 ) = p2(·|θ2
2 ), 

we can obtain

Uθ1
2

≥ Uθ2
2

+ (v2(θ
1
2 ) − v2(θ

2
2 ))

∑
m≥2

p(θm
1 |θ1

2 ). (19)

By plugging the above two inequalities into expression (17), we know

0 ≥
∑
m

p(θm
1 )

( − v1(θ
m
1 )

∑
n≤m

p(θn
2 |θm

1 )
) + p(θ2

1 )(v1(θ
2
1 ) − v1(θ

1
1 ))p(θ1

2 |θ1
1 )

+
∑
n

p(θn
2 )

( − v2(θ
n
2 )

∑
m≥n

p(θm
1 |θn

2 )
) + p(θ1

2 )(v2(θ
1
2 ) − v2(θ

2
2 ))

∑
m≥2

p(θm
1 |θ1

2 ). (20)

In the right-hand side of the above expression, the coefficients of v1(θ
1
1 ) and v2(θ

1
2 ) are

− p(θ1
1 )p(θ1

2 |θ1
1 ) − p(θ2

1 )p(θ1
2 |θ1

1 ) < −p(θ1
1 )p(θ1

2 |θ1
1 ) = −p(θ1

2 )p(θ1
1 |θ1

2 ),

− p(θ1
2 ) + p(θ1

2 )
∑
m≥2

p(θm
1 |θ1

2 ) = −p(θ1
2 )p(θ1

1 |θ1
2 ),

respectively, where the strict inequality follows from Assumption 2.1 and the equality in the first 
expression follows from the common prior assumption. Hence, if we let v1(θ

1
1 ) and v2(θ

1
2 ) be 

sufficiently close in absolute value and all other values vi(θi) �= v1(θ
1
1 ), v2(θ

1
2 ) be sufficiently 

close to zero, then the right-hand side of expression (20) is positive, a contradiction.
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Therefore, q cannot be implemented via an IR and BB mechanism with ambiguous transfers.
Sufficiency of Part 1. Pick an arbitrary ex-post efficient allocation rule q . Define two transfer 

rules φ and φ′ by φi = ηi + cψi and φ′
i = ηi − cψi for all i ∈ I , where ψ is defined in and proved 

to exist by Lemma A.3, ηi(θ) = −ui(q(θ), θ) for all θ ∈ �, and c is no less than

max
i∈I,θ̄i ,θ̂i∈�i,

θ̄i �=θ̂i

∑
θ−i∈�−i

[ui

(
q(θ̂i , θ−i ), (θ̄i , θ−i )

) − ui

(
q(θ̂i , θ−i ), (θ̂i , θ−i )

)]pi(θ−i |θ̄i )

|∑θ−i∈�−i
ψi(θ̂i , θ−i )pi(θ−i |θ̄i )|

.

Define � = {φ, φ′}. All IR constraints bind because for each i ∈ I , ηi extracts agent i’s full 
surplus on path, and cψi has zero interim expected value under agent i’s belief. The choice of c
gives any unilateral deviator a non-positive worst-case expected payoff, and thus the IC condition 
also holds. Hence, (q, �) extracts the full surplus.

Sufficiency of Part 2. Pick any BB transfer rule η : � → RN such that∑
θ−i∈�−i

[ui

(
q(θi, θ−i ), (θi, θ−i )

) + ηi(θi, θ−i )]pi(θ−i |θi) ≥ 0

for all i ∈ I and θi ∈ �i . For example, we can choose ηi(θ) = 1
N

∑
j∈I uj (q(θ), θ) −ui(q(θ), θ)

for all i ∈ I and θ ∈ � so that all agents have equal surplus. By Lemma A.5, there exists a 
BB transfer rule ψ which gives all agents zero interim values on path and gives any unilateral 
deviator a non-zero interim expected value.

Pick any c such that c is no less than
∑

θ−i∈�−i
[ui

(
q(θ̂i , θ−i ), (θ̄i , θ−i )

) + ηi(θ̂i , θ−i ) − ui

(
q(θ̄i , θ−i ), (θ̄i , θ−i )

) − ηi(θ̄i , θ−i )]pi(θ−i |θ̄i )

|∑θ−i∈�−i
ψi(θ̂i , θ−i )pi(θ−i |θ̄i )|

for all i and θ̄i �= θ̂i , where the denominator is positive. Let M be (q, {η + cψ, η − cψ}).
The IR condition follows from the choice of η and the fact that ψ gives agents zero interim 

values on path. For all i and θ̄i �= θ̂i , the choice of c indicates that∑
θ−i∈�−i

[ui

(
q(θ̄i , θ−i ), (θ̄i , θ−i )

) + ηi(θ̄i , θ−i )]pi(θ−i |θ̄i ) ≥

min{
∑

θ−i∈�−i

[ui

(
q(θ̂i , θ−i ), (θ̄i , θ−i )

) + ηi(θ̂i , θ−i ) ± cψi(θ̂i , θ−i )]pi(θ−i |θ̄i )},

and thus M satisfies the IC condition. The BB condition of M follows from BB of η and ψ . 
Therefore, M is an IR and BB mechanism with ambiguous transfers that implements q .

Sufficiency of Part 3. Given a profile of beliefs that can be generated by a common prior 
p, when the BDP property holds for all agents, the sufficiency part has been proven in Part 2. 
Suppose instead that there is exactly one agent, i, for whom the BDP property fails. Following 
a similar argument as Lemmas A.4 and A.5, one can prove that there exists a transfer rule ψ :
� → RN such that

1.
∑
j∈I

ψj (θ) = 0 for all θ ∈ �;

2.
∑

θ ∈�

ψj (θj , θ−j )pj (θ−j |θj ) = 0 for all j ∈ I and θj ∈ �j ;

−j −j
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3.
∑

θ−j ∈�−j

ψj (θ̂j , θ−j )pj (θ−j |θ̄j ) �= 0 for all j �= i and θ̄j , θ̂j ∈ �j satisfying θ̄j �= θ̂j .

Notice that the third statement is different from the one in Lemma A.5, as the BDP property fails 
for agent i here.

We construct a mechanism where agent i obtains all the surplus on path. For all θ ∈ � and 
j ∈ I with j �= i, let ηj (θ) = −uj (q(θ), θj ), and ηi(θ) = − 

∑
j �=i ηj (θ).

Pick any c that is no less than

max
j �=i,θ̄j ,θ̂j ∈�j ,

θ̄j �=θ̂j

∑
θ−j ∈�−j

[uj

(
q(θ̂j , θ−j ), θ̄j

) − uj

(
q(θ̂j , θ−j ), θ̂j

)]pj (θ−j |θ̄j )

|∑θ−j ∈�−j
ψj (θ̂j , θ−j )pj (θ−j |θ̄j )|

.

Let the set of ambiguous transfers be � = {η + cψ, η − cψ}, which is IR and BB. The choice 
of η, ψ , and c implies that agent j �= i obtains zero MEU on path and non-positive MEU when 
he unilaterally misreports. Therefore, j ’s IC constraints are satisfied.

For any θ̄i , θ̂i ∈ �i with θ̄i �= θ̂i , the argument below verifies IC(θ̄i θ̂i ):

min{
∑

θ−i∈�−i

[ui

(
q(θ̄i , θ−i ), θ̄i

) + ηi(θ̄i , θ−i ) ± cψi(θ̄i , θ−i )]pi(θ−i |θ̄i )}

=min{
∑

θ−i∈�−i

[ui

(
q(θ̄i , θ−i ), θ̄i

) +
∑
j �=i

uj

(
q(θ̄i , θ−i ), θj

) ± cψi(θ̄i , θ−i )]pi(θ−i |θ̄i )}

=
∑

θ−i∈�−i

[ui

(
q(θ̄i , θ−i ), θ̄i

) +
∑
j �=i

uj

(
q(θ̄i , θ−i ), θj

)]pi(θ−i |θ̄i )

≥
∑

θ−i∈�−i

[ui

(
q(θ̂i , θ−i ), θ̄i

) +
∑
j �=i

uj

(
q(θ̂i , θ−i ), θj

)]pi(θ−i |θ̄i )

≥min{
∑

θ−i∈�−i

[ui

(
q(θ̂i , θ−i ), θ̄i

) +
∑
j �=i

uj

(
q(θ̂i , θ−i ), θj

) ± cψi(θ̂i , θ−i )]pi(θ−i |θ̄i )},

where the first equality comes from the definition of η, the second equality follows from the 
second property of ψ introduced at the beginning of this part of the proof, the first inequality 
comes from ex-post efficiency of q at each type profile (θ̄i, θ−i ), and the second inequality comes 
from the minimization operation.

Therefore, the IR and BB mechanism with ambiguous transfers implements q . �
Appendix. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2019 .05 .009.
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