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In this Online Appendix, we discuss the alternative collusion-proofness notion moti-

vated by Safronov (2018). An ambiguous mechanism pq, T q is said to satisfy the coali-

tion incentive compatibility (CIC) condition, if for all S P 2IztHu with |S| ě 2,

θS P ΘS, and δS : ΘS Ñ ∆pΘSq, VSrq, T spθS, δ̄
Sq ě VSrq, T spθS, δ

Sq, where VSrq, T spθS, δ
Sq “

mintPT VSrq, tspθS, δ
Sq. Namely, we view each coalition S as a pseudo agent whose type is

an element in ΘS and whose utility is the sum of its members’ utility levels. Each pseudo

agent also uses the MEU to compute his interim payoff. The CIC condition requires that no

pseudo agent has the incentive to misreport.

The CIC condition differs from the RCP (or RCP*) condition in the main text in a few

ways. First, agents in a coalition are assumed to pool their private information under the CIC

condition. However, the mediator of coalition S in the RCP notion has to rely on an S-side

contract to elicit members’ private information. Second, a coalition is implicitly assumed to

engage in manipulation under the CIC condition if there is a joint reporting strategy δS and

a type profile θS such that θS strictly benefits from adopting δS. On the other hand, the

RCP notion requires the S-side contract to be S-IR, i.e., to be weakly profitable for every

i P S and θi P Θi. Moreover, the minimization operators are imposed at different stages

under the two notions: it is imposed on the expected payoff of type-θS pseudo agent S in the

CIC notion, but imposed on the expected payoff of type-θi agent i P S in the RCP condition.

These differences make neither condition stronger than the other. Hence, the design of a
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CIC ambiguous mechanism remains a non-trivial question. Despite the differences, we study

both the RCP condition (in the main text) and the CIC condition since the two notions are

representative ways to study collusion-proofness in the literature.16

Lemma 1 directly implies Proposition 3, which can be viewed as the counterpart of

Proposition 1 under the CIC condition. We thus omit its proof. Note that the following

result does not depend on the cardinality of Θ.

Proposition 3. No information structure pΘ, pq can guarantee FSE via standard Bayesian

mechanisms satisfying the CIC condition.

We establish the counterpart of Proposition 2 under the CIC condition.

Proposition 4. Given an information structure pΘ, pq, the following statements are equiv-

alent:

1. The CBDP property holds for prior p.

2. The information structure pΘ, pq guarantees FSE via ambiguous mechanisms satisfying

the CIC condition.

We remark on how to establish Statement 2 from Statement 1 before presenting the proof.

To do this, we establish the following lemma.

Lemma 7. Given S P 2IztH, Iu and type profile θ̄S P ΘS, if there does not exist θ̂S P ΘSztθ̄Su

such that pp¨|θ̂Sq “ pp¨|θ̄Sq, then there exists a transfer rule φθ̄S : Θ Ñ Rn such that

(i)
ř

iPC

ř

θ´CPΘ´C
φθ̄Si pθC , θ´Cqppθ´C |θCq “ 0 for all C P 2IztHu and θC P ΘC;

16 One can think of other notions that possess similarities with both the RCP condition and the CIC

condition. For example, suppose members in S are forced to accept any S-IC ambiguous S-side contract

pδS ,ΨSq and the mediator can choose to misreport to the main mechanism on behalf of S when it is profitable

for every member. Then a collusion-proofness notion could require that there does not exist a coalition S,

an S-IC ambiguous S-side contract pδS ,ΨSq, and θS P ΘS such that

min
tPT,ψSPΨS

ÿ

θ1SPΘS

ÿ

θ´SPΘ´S

ruipqpθ
1
S , θ´Sq, pθS , θ´Sqq ` tipθ

1
S , θ´Sq ` ψ

S
i pθSqsppθ´S |θSqδ

SrθSspθ
1
Sq

ą min
tPT

ÿ

θ´SPΘ´S

ruipqpθS , θ´Sq, pθS , θ´Sqq ` tipθS , θ´Sqsppθ´S |θSq, @i P S.
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(ii)
ř

iPS

ř

θ´SPΘ´S
φθ̄Si pθ̂S, θ´Sqppθ´S|θ̄Sq ă 0 for all θ̂S P ΘSztθ̄Su.

We sketch the proof of the lemma first. As coalitions and individuals overlap with each

other, piq above imposes multiple intertwined constraints on the transfer rule φθ̄S and com-

plicates the problem compared to the case without coalition concerns. As a simplification,

we first view the problem as a two-agent one, which contains pseudo agents S and IzS only.

In Step 1 of the proof, we apply the transposition theorem of Motzkin (1951) to establish

the existence of an ex-post budget balanced transfer rule φ between the two pseudo agents

for which piiq and piq with respect to C “ S and C “ IzS hold. In Steps 2 and 3, we

redistribute pφiqiPS among agents in S, redistribute pφiqiPIzS among agents in IzS, so that

under the redistribution φ̂, the equality in piq holds for all other C. The division has to

be carefully designed rather than a simplistic equal division. In particular, when specifying

φ̂i, not only the equation in piq with respect to C “ tiu is affected, those with respect to

any other coalition containing i are also affected. To tackle this challenge, we apply the

alternative theorem of Fredholm (1903) to establish the existence of a division such that

every agent i P I receives zero in expectation conditional on any θ´i. Intuitively, this means

that the pseudo agent Iztiu always believes that i receives zero in expectation. In Steps 4 to

6, we show that the division satisfies all required conditions by applying the law of iterated

expectations.

An ambiguous mechanism pq, T q, where T ” tη ` λφθ̄S |S P 2IztH, Iu, θ̄S P ΘSu, η is the

same with the one constructed in Step 1 of Proposition 2, and λ P R` is sufficiently large,

is then shown to be feasible, extract the full surplus, and satisfy the CIC condition. To see

this, by (i) in Lemma 7, each φθ̄S does not affect the MD’s ex-post payoff, as setting C “ I

implies that φθ̄S is ex-post budget balanced; neither does φθ̄S affect any (potentially pseudo)

agent’s on-path interim payoff, as φθ̄S gives every C P 2IztH, Iu zero expected utility on

path. However, by (ii) above, for each type-θS (potentially pseudo) agent S P 2IztH, Iu,

any unilateral deviation from truthful report (in potentially mixed strategy) earns him a

negative expected transfer under φθS . When the multiplier λ is sufficiently large, η`λφθS P T

gives θS a negative expected utility, which bounds his MEU of misreporting from above and

eventually establishes the IC and CIC conditions.17

17Such a construction also works for the collusion-proofness notion mentioned in footnote 16.
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Before presenting the details, we remark that although the above construction of pq, T q

satisfies CIC, it may not satisfy RCP/RCP*. Intuitively, the above construction ensures that

by misreporting, a non-grand pseudo agent S earns a low MEU after knowing θS. However,

S may find it profitable to misreport without conditional on any θS, which leaves room for an

S-feasible reallocational manipulation. The inconsistency happens because randomization

may be used to partially hedge against ambiguity, and the ex-ante utility (the one without

conditional on θS) of misreporting as randomization of interim utilities (those after knowing

θS) is not necessarily low.

However, we can let T̂ ” T 1 Y T 2, where T 1 ” tη ` λ1φ
θ̃i |i P I, θ̃i P Θiu Y tη ` λ2φ

S|S P

2IztH, Iuwith 2 ď |S| ď n´ 1u and T 2 “ tη`λ3φ
θS |S P 2IztH, Iuwith 2 ď |S| ď n´ 1, θS P

ΘSu. Let the choice of λ1 and λ2 follow from the proof of Proposition 2, and let λ3 P R` be

weakly larger than

max
SP2I ztH,Iu,

θ̄S,θ̂SPΘS with θ̄S‰θ̂S

mintVSrq, T
1
spθ̄S, θ̄Sq, VSrq, ηspθS, θSqu ´ VSrq, ηspθ̄S, θ̂Sq
ÿ

iPS

ÿ

θ´SPΘ´S

φθ̄Si pθ̂S, θ´Sqppθ´S|θ̄Sq
.

Then one can follow the proofs of Propositions 2 and 4 and show that pq, T̂ q is an FSE am-

biguous mechanism that simultaneously satisfies the RCP* condition and the CIC condition.

We now include the details of the proofs of Lemma 7 and Proposition 4.

Proof of Lemma 7. Step 1. Show that there exists an ex-post budget balanced transfer

rule φ : Θ Ñ Rn such that

(a)
ř

iPC

ř

θ´CPΘ´C
φipθC , θ´Cqppθ´C |θCq “ 0 for all C P tS, IzSu and θC P ΘC ;

(b)
ř

iPS

ř

θ´SPΘ´S
φipθ̂S, θ´Sqppθ´S|θ̄Sq ă 0 for all θ̂S P ΘSztθ̄Su.

To see this, recall the version of Lemma 4 where the coalition in the statement of that

lemma is equal to the set of all agents. By viewing the current environment as one with two

“pseudo” agents, one “pseudo” agent S, and the other “pseudo” agent IzS, we can follow

Lemma 4 to establish the above result.

Step 2. Given the above φ, prove the existence of pφ̂i : Θ Ñ RqiPS such that

(a)
ř

θiPΘi
φ̂ipθi, θ´iqppθi|θ´iq “ 0 for all i P S and θ´i P Θ´i;
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(b)
ř

iPS φ̂ipθq “
ř

iPS φipθq for all θ P Θ.

When |S| “ 1, denote the agent in S by i. Let φ̂i “ φi. Then (b) is satisfied and
ÿ

θiPΘi

φ̂ipθi, θ´iqppθi|θ´iq “
ÿ

θiPΘi

φipθi, θ´iqppθi|θ´iq

ex-post budget balancedφ
“ ´

ÿ

θiPΘi

ÿ

jPIztiu

φjpθi, θ´iqppθi|θ´iq
Step 1
“ 0

for each θ´i P Θi, i.e., (a) is satisfied.

Now we proceed with the case that |S| ě 2. Suppose by way of contradiction that there

does not exist φ̂ such that (a) and (b) are satisfied.

To apply Theorem 2, with the vectors defined in Section A.1, we construct matrices B

and b of dimensions mˆ l and mˆ 1, respectively, where m “
ř

iPS |Θ´i|` |Θ| and l “ n|Θ|.

Matrix B is obtained by vertically stacking up
ř

iPS |Θ´i| row vectors p
tiu
θ´iθ´i

P Rl
` for all i P S

and θ´i P Θ´i (the order does not matter), and |Θ| row vectors eSθ for all θ P Θ (following the

order of elements in Θ). Construct matrix b by vertically stacking up
ř

iPS |Θ´i| zeros and

|Θ| numbers
ř

iPS φipθq for all θ P Θ (following the order of elements in Θ). The supposition

above implies that Bx “ b has no column vector solution x P Rl.

By Theorem 2, B1y “ 0lˆ1 has a column vector solution y P Rm with y1b ‰ 0, i.e., there

exists a profile of numbers paθ´i P Rqθ´iPΘ´i,iPS and a profile pbθ P RqθPΘ such that

ÿ

iPS

ÿ

θ´iPΘ´i

aθ´ip
tiu
θ´iθ´i

`
ÿ

θPΘ

bθe
S
θ “ 01ˆl, (26)

ÿ

iPS

ÿ

θPΘ

bθφipθq ‰ 0. (27)

Recall from Appendix A.1, each side of (26) is a vector in Rl and each dimension corre-

sponds to an agent and a type profile.

We now establish that

aθ´i “ aθ´j , @θ P Θ, i, j P S with i ‰ j. (28)

To see this, fix any θ P Θ and i, j P S with i ‰ j for now. The dimensions in (26)

corresponding to i and θ imply that

aθ´ippθq ` bθ “ 0. (29)
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Similarly, the dimensions in (26) corresponding to j and θ imply that

aθ´jppθq ` bθ “ 0.

Given ppθq ą 0, the above two expressions imply that aθ´i “ aθ´j .

We now take Steps piq to piiiq to show that for any θ´S P Θ´S, there exists a unique

constant κθ´S such that apθSztiu,θ´Sq “ κθ´S for all θS P ΘS and i P S.

Step piq. We begin with θS ‰ θ1S that differ from each other at exactly one agent in S only

and show that apθSztiu,θ´Sq “ apθ1
Sztiu

,θ´Sq for all i P S. To this see, label this agent for whom

θS and θ1S differ by j. As θS and θ1S differ only at j, pθSztju, θ´Sq “ pθ
1
Sztju, θ´Sq, and thus,

apθSztju,θ´Sq “ apθ1
Sztju

,θ´Sq. This further implies that apθSztiu,θ´Sq
p28q
“ apθSztju,θ´Sq “ apθ1

Sztju
,θ´Sq

p28q
“

apθ1
Sztiu

,θ´Sq for all i P S with i ‰ j. To this end, we have shown that apθSztiu,θ´Sq “ apθ1
Sztiu

,θ´Sq

for all i P S (including the special case that i “ j).

Step piiq. We show that for any θS ‰ θ1S, apθSztiu,θ´Sq “ apθ1
Sztiu

,θ´Sq for all i P S. To see

this, there exists a finite sequence pθmS qm“1,...,m̄ where θ1
S “ θS, θm̄S “ θ1S, and every pair of

adjacent type profiles differ at exactly one agent. By applying the argument in Step piq to

each pair of adjacent type profiles recursively, it must be true that apθSztiu,θ´Sq “ apθ1
Sztiu

,θ´Sq

for all i P S.

Step piiiq. Finally, notice that apθSztju,θ´Sq
p28q
“ apθSztiu,θ´Sq

Step piiq
“ apθ1

Sztiu
,θ´Sq

p28q
“ apθ1

Sztju
,θ´Sq

for any θS, θ1S and i, j P S with i ‰ j. Hence, there exists a unique constant κθ´S such that

apθSztiu,θ´Sq “ κθ´S for all θS P ΘS and i P S.

The above observation, joint with (29), implies that for each θ´S P Θ´S, κθ´SppθS, θ´Sq`

bpθS ,θ´Sq “ 0, i.e., bpθS ,θ´Sq “ ´κθ´SppθS, θ´Sq, for all θS P ΘS.

Notice that φ satisfies the requirements established in Step 1. We have
ÿ

iPS

ÿ

θSPΘS

ppθS|θ´SqφipθS, θ´Sq
ex-post budget balanced φ

“ ´
ÿ

jPIzS

ÿ

θSPΘS

ppθS|θ´SqφjpθS, θ´Sq
(a) in Step 1

“ 0

for all θ´S P Θ´S.

As a result,
ÿ

iPS

ÿ

θPΘ

bθφipθq “
ÿ

θ´SPΘ´S

ÿ

iPS

ÿ

θSPΘS

bpθS ,θ´SqφipθS, θ´Sq

“
ÿ

θ´SPΘ´S

´κθ´Sppθ´Sq
ÿ

iPS

ÿ

θSPΘS

ppθS|θ´SqφipθS, θ´Sq

looooooooooooooooomooooooooooooooooon

“0

“ 0,
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a contradiction with expression (27).

Step 3. Similar to Step 2, given the φ in Step 1, one can establish the existence pφ̂i :

Θ Ñ RqiPIzS such that

(a)
ř

θiPΘi
φ̂ipθi, θ´iqppθi|θ´iq “ 0 for all i P IzS and θ´i P Θ´i;

(b)
ř

iPIzS φ̂ipθq “
ř

iPIzS φipθq for all θ P Θ.

Step 4. Combine pφ̂i : Θ Ñ RqiPS and pφ̂i : Θ Ñ RqiPIzS into a transfer rule φ̂. By

budget balance of φ and (b) from Steps 2 and 3, φ̂ also satisfies ex-post budget balance.

As a result, we have established the existence of an ex-post budget balanced transfer rule

φ̂ : Θ Ñ Rn such that,

(a)
ř

θiPΘi
φ̂ipθi, θ´iqppθi|θ´iq “ 0 for all i P I and θ´i P Θ´i;

(b)
ř

iPC φ̂ipθq “
ř

iPC φipθq for all C P tS, IzSu and θ P Θ.

Step 5. Show that

ÿ

iPC

ÿ

θ´CPΘ´C

φ̂ipθC , θ´Cqppθ´C |θCq “ 0, @C P 2IztH, Iu, θC P ΘC . (30)

By (a) and budget balance of φ̂ derived from Step 4,

ÿ

jPIztiu

ÿ

θiPΘi

φ̂jpθi, θ´iqppθi|θ´iq “ 0, @i P I, θ´i P Θ´i. (31)

Hence, for any C P 2IztH, Iu with |C| “ n ´ 1, the equation in (30) holds. It remains to

show that the equation in (30) holds for any C P 2IztH, Iu with |C| ă n´ 1. Fix such a C

and K P 2IztH, Iu such that C XK “ H and |C YK| “ n´ 1. By (31),

ÿ

iPCYK

ÿ

θ´CYKPΘ´CYK

φ̂ipθCYK , θ´CYKqppθ´CYK |θCYKq “ 0, @θCYK P ΘCYK .

Since C Ď C YK, the law of iterated expectations implies that

ÿ

iPCYK

ÿ

θ´CPΘ´C

φ̂ipθC , θ´Cqppθ´C |θCq “ 0, @θC P ΘC . (32)
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For any i P K, since C Ď Iztiu, the law of iterated expectations and (a) from Step 4 imply

ÿ

θ´CPΘ´C

φ̂ipθC , θ´Cqppθ´C |θCq “ 0, @θC P ΘC . (33)

From (32) and the fact that (33) holds for all i P K, we know that (30) holds.

Step 6. Rename φ̂ as φθ̄S , which satisfies the conditions required by the lemma.

Proof of Proposition 4. To establish Statement 1 from Statement 2, we assume by way

of contradiction that Statement 2 holds but the CBDP property fails. Then under the same

payoff structure in Lemma 6 with ε P p0, 1
n´1
q, we fix a coalition S and type profiles θ̄S ‰ θ̂S

such that i P S, θ̄i is a component of θ̄S, θ̂i is a component of θ̂S, and θ̄i ‰ θ̂i. It is easy to

show that summing up constraints CICpθ̄S; θ̂Sq and CICpθ̂S; θ̄Sq yields a contradiction. We

omit the details. Now we take two steps to establish Statement 2 from Statement 1.

Step 1. Fix any efficient allocation rule q : Θ Ñ A, and define T “ tη ` λφθS |S P

2IztH, Iu, θS P ΘSu, where η is constructed in the same way as in Proposition 2, each φθS

satisfies the conditions in Lemma 7, and λ P R` is weakly larger than

max
SP2I ztH,Iu,

θ̄S,θ̂SPΘS with θ̄S‰θ̂S

VSrq, ηspθ̄S, θ̄Sq ´ VSrq, ηspθ̄S, θ̂Sq
ÿ

iPS

ÿ

θ´SPΘ´S

φθ̄Si pθ̂S, θ´Sqppθ´S|θ̄Sq
.

Step 2. It is easy to verify that pq, T q satisfies the IR condition and (4). To demonstrate

CIC and IC, we discuss two cases.

Case 1, S “ I. Since each φθ̃C is budget balanced, for each t P T , θ P Θ, and δI ,

VIrq, tspθ, δ
I
q “

ÿ

θ1PΘ

ÿ

iPI

rui
`

qpθ1q, θ
˘

` ηipθ
1
qsδIrθspθ1q

p21q
“

ÿ

θ1PΘ

r
ÿ

iPI

ui
`

qpθ1q, θ
˘

` u0

`

qpθ1q
˘

sδIrθspθ1q ´ FS

ď
ÿ

iPI

ui
`

qpθq, θ
˘

` u0

`

qpθq
˘

´ FS “ VIrq, tspθ, δ̄
I
q,

(34)

where the inequality follows from the efficiency of q. As a result, VIrq, T spθ, δ̄
Iq ě VIrq, T spθ, δ

Iq.

Case 2, S P 2IztH, Iu. For each θS P ΘS and t P T , since t “ η ` λφθ̃C for some

C P 2IztH, Iu and θ̃C P ΘC , Condition (i) of φθ̃C in Lemma 7 implies that

VSrq, tspθS, δ̄
S
q “ VSrq, ηspθS, δ̄

S
q “ VSrq, T spθS, δ̄

S
q.
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For each θS P ΘS, as η ` λφθS P T , VSrq, T spθS, θ̂Sq is no higher than

VSrq, ηspθS, θ̂Sq ` λ
ÿ

iPS

ÿ

θ´SPΘ´S

φθSi pθ̂S, θ´Sqppθ´S|θSq ď VSrq, ηspθS, δ̄
S
q, @θ̂S P ΘS,

where the inequality follows from the choice of λ and Condition (ii) of φθS stated in Lemma

7. Hence, VSrq, T spθS, δ
Sq ď VSrq, η ` λφ

θS spθS, δ
Sq ď VSrq, T spθS, δ̄

Sq for any δS.

To this end, we have completed Step 2.

References

Fredholm, I. (1903). Sur une classe d’équations fonctionnelles. Acta Mathematica, 27:365–

390.

Motzkin, T. S. (1951). Two consequences of the transposition theorem on linear inequalities.

Econometrica, 19(2):184.

Safronov, M. (2018). Coalition-proof full efficient implementation. Journal of Economic

Theory, 177:659–677.

9


