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Abstract

This paper studies a Bayesian persuasion problem where the agent learns his private infor-

mation gradually. We find that the optimal persuasion mechanism may offer different experi-

ments to different types of agents. In particular, the agent’s late-stage precise private informa-

tion is of no screening value to the principal, but the agent’s early-stage rough information may

be of screening value. This finding contrasts with the optimality of non-discriminatory infor-

mation disclosure in some commonly studied scenarios with one stage of private information.

We identify necessary and sufficient condition under which the optimal information disclosure

is non-discriminatory. Our results demonstrate that time can be utilized as an instrument to

achieve information discrimination.
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1 Introduction

Examples are abundant in which a principal (she) releases information to persuade an agent

(he). For instance, an online platform such as Pinterest or Instagram recommends content

that showcases a product’s quality, to entice the user to purchase through its “shop now”

link; a project manager reveals information about the worthiness of a project, aiming to

convince a worker to undertake this project; a search committee chair presents information

about the research potential of a candidate, to persuade the department head to make an

offer. Nevertheless, it is often the case that the agent gradually learns some additional private

information, which, along with the information released by the principal, helps him to make

a decision. For example, the Pinterest user may gradually refine his idiosyncratic taste for

this product; the worker may gradually discover his private cost of working on the project;

the department head may update his private assessment of the candidate’s match quality

with the department throughout time.

In this paper, we study the design of a persuasion mechanism so that the principal

releases information about the state of the world to best influence the action of the agent.

The agent learns his private information gradually. He first receives a rough private signal

(type) in stage one. This rough private signal conveys noisy information of his refined private

information to be realized in stage two, which can be interpreted as his private cost or bar of

taking the principal’s preferred action. Eventually, the agent bases his decision on the state

of the world and his own refined private information, although the principal always prefers

the agent to take one action.

In general, the principal can commit to a menu of experiments about the state of the

world contingent on the agent’s report of his stage-one rough private signal and stage-two

refined private information. If the menu consists of at least two experiments, then we say the

optimal persuasion mechanism entails information discrimination. Otherwise, the optimal

persuasion mechanism is non-discriminatory.

We find that the optimal persuasion mechanism may or may not be discriminatory. In

particular, when it is discriminatory, it must be implemented by a menu of experiments con-

tingent on the agent’s report of stage-one private information only. We provide a necessary
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and sufficient condition, as well as easy-to-check conditions, on when the optimum necessi-

tates information discrimination. One such sufficient condition essentially implies that the

high type dominates the low type strongly. When the high type dominates the low type in

a weak way, for instance, when the agent’s stage-one type is independent of the stage-two

private cost, the optimum is implementable via a single experiment.

The observation that the agent’s stage-one private information may be of screening value,

but not the stage-two information, complements findings in the literature. In some commonly

studied environments where the agent directly observes his precise cost, it is shown that the

optimum entails no information discrimination. See, e.g., Kolotilin et al. (2017) and Guo and

Shmaya (2019), which are discussed in detail in the literature review. Our stage-two private

information corresponds to their private cost and is also of no screening value. However, our

new observation is that the rough private information may be of screening value, i.e., time

can be utilized as an instrument to achieve information discrimination.

In reality, discriminatory information provision is seen in applications. For example,

online platforms can utilize a user’s browsing history to personalize recommended content.

These browsing histories convey noisy information about the user’s “bar” for buying a certain

product and can be manipulated by the user easily, e.g., by logging in from a different

account. Our results rationalize such a practice of personalizing content.

Literature review This paper joins the works on information design with a privately

informed agent. The setup of the current paper is most related to Kolotilin et al. (2017),

where the information controlled by the sender is independently distributed to the private

information of the agent. In their baseline model, Kolotilin et al. (2017) show that every

incentive compatible persuasion mechanism can be implemented by a single experiment.

Hence, the optimal persuasion mechanism can also be implemented by an experiment, i.e.,

there is no value in information discrimination. In Guo and Shmaya (2019), the information

controlled by the sender is correlated with the agent’s private information. It is no longer

true that every incentive compatible persuasion mechanism can be implemented by a single

experiment, but the optimal one can be implemented without information discrimination.

The current paper complements the above papers by showing that when the agent’s private
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information arrives gradually, even though these pieces of information are independent of

the one controlled by the sender, not every incentive compatible persuasion mechanism can

be implemented by a single experiment, including the optimal one. Hence, there is a value

in information discrimination.

The assumption that the agent gradually learns his private information, which presents

an opportunity for the principal to sequentially screen the agent’s private information, has

been seen in the literature on mechanism design as well as that on delegation. In the

mechanism design literature, Courty and Li (2000) study the optimal selling mechanism

for a good when the agent first learns a rough private valuation of a product, i.e., his

type, and then learns his precise private valuation. When only the interim participation

constraint is imposed on the mechanism, they show that the optimal selling mechanism

is a menu of option contracts, with different contracts designed for different types. When

strengthening the interim participation constraint with the ex-post one, Krähmer and Strausz

(2015) establish a decreasing cross-hazard rate condition under which the optimal selling

mechanism is static, i.e., offers the same contract to different types. This implies that

there is no value in screening the agent’s type. By relaxing the decreasing cross-hazard

rate condition and keeping the ex-post participation constraint, Bergemann et al. (2020)

further show that the optimal selling mechanism may or may not offer the same contract to

different types and characterize when the optimal mechanism is static. In the literature on

delegation, Krähmer and Kováč (2016) study a problem where the agent learns his private

information gradually. They show that the optimal delegation may or may not offer different

delegation sets to different types, and provide sufficient conditions for the optimal delegation

to be static or sequential. The current paper studies an information design problem, thereby

differing from the above-mentioned papers. However, as our optimal persuasion mechanism

may feature a menu of experiments, with different experiments designed for different types,

our results bear some similarity with the insights from these papers, especially those from

Krähmer and Kováč (2016) and Bergemann et al. (2020).

The information design literature has discussed several factors that lead the optimal per-

suasion to involve information discrimination. Kolotilin et al. (2017) have discussed several

such factors, including nonlinearity, larger action sets, etc. Another important scenario that
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benefits from information discrimination is when the problem involves joint design in in-

formation and pricing. See, for example, Li and Shi (2017), Guo et al. (2024), and Wei

and Green (2024). Moreover, when there are multiple agents, the sender may leverage the

heterogeneity among agents by discriminatorily offering information. See, e.g., Bardhi and

Guo (2018), Bobkova and Klein (2018), Chan et al. (2019). In the current paper, we point

out a new factor that contributes to profitable information discrimination, i.e., the gradual

arrival of private information.

Finally, there is a rich strand of the literature embedding dynamics to information design.

For instance, when multiple senders move sequentially, as in Li and Norman (2021) and Wu

(2023), the problem naturally features sequential information design. Alternatively, the state

of the world can evolve dynamically, as in Ely (2017). Last but not least, it can be the case

that information production takes time, as in Che et al. (2023). In the current paper, the

source of dynamics is the evolution of agent’s private information, which differentiates the

current paper from most other papers in this strand of the literature.

2 Setup

Consider a relationship between a principal (she) and an agent (he). There are two actions

that the agent can take from A “ t0, 1u. Action a “ 0 generates no benefit or cost to the

principal and the agent. Action a “ 1 leads to a random benefit ω P Ω “ r0, 1s and incurs a

private cost c to the agent, yet it always benefits the principal. Let the principal’s and the

agent’s utilities be

vpω, c, aq “ a and upω, c, aq “ apω ´ cq.

In stage one, the agent learns his type t P tL,Hu, which is realized with probability fptq

and conveys noisy information about his private cost of taking action a “ 1. The agent’s

private cost, c P C ” r0, 1s, is realized in stage two. Given that t is learned in stage one, the

CDF and PDF of c are given by Gtp¨q and gtp¨q. Let gp¨q “ fpLqgLp¨q ` fpHqgHp¨q be the

unconditional density of c. We impose the following assumptions throughout the paper.

Assumption 1. PDFs gLpcq, gHpcq, and gpcq are positive, continuously differentiable, and

log-concave in c.
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Assumption 2. The likelihood ratio
gHpcq

gLpcq
is strictly increasing in c.

We may also call the random benefit ω the state, which is realized only at stage three.

The state ω follows CDF Φ which has continuous and fully supported PDF φ. Moreover, ω

is assumed to be independent of pt, cq. The principal controls the releasing of information

about ω.

The principal designs a persuasion mechanism in stage zero to maximize her expected

payoff. A persuasion mechanism π : Ω ˆ T ˆ C Ñ r0, 1s requires the agent to sequentially

reveal t and c, and then recommends the agent to take action a “ 1 (resp. a “ 0) with

probability πpω, t, cq (resp. 1´ πpω, t, cq).

The agent, after receiving the recommendation from the principal, can choose to follow it

or not. Let a1 (resp. a0) be the action taken by the agent when he receives recommendation

a “ 1 (resp. a “ 0). Let t̂ and ĉ be the agent’s reported private information in stage one

and stage two. Then, the agent with true information t and c has the following expected

payoff in stage two:

Uπpt̂, ĉ, a0, a1|t, cq ”

ż

Ω

„

a0p1´ πpω, t̂, ĉqq ` a1πpω, t̂, ĉq



pω ´ cq dΦpωq.

The persuasion mechanism should give the agent incentive to truthfully report in both

stages and follow the recommendation. We decompose this requirement into two conditions:

incentive compatibility conditions in stage two (IC2) and one (IC1).

The IC2 condition requires that the agent has no incentive to engage in one-shot deviation

in stage two, which includes misreporting c and disobeying the recommendation sent by the

principal. Formally, IC2 requires that Uπpt, cq ” Uπpt, c, 0, 1|t, cq ě Uπpt, ĉ, a0, a1|t, cq, i.e.,

for all t P T , c P C, ĉ P C, and a0, a1 P A,

ż

Ω

πpω, t, cqpω ´ cq dΦpωq ě

ż

Ω

„

a0p1´ πpω, t, ĉqq ` a1πpω, t, ĉq



pω ´ cq dΦpωq. (1)

The IC1 condition requires that the agent has no incentive to deviate starting from

stage one, which includes one-shot deviation in stage one and double deviation in both

stages. Formally, IC1 requires that

ż

cPC

Uπpt, cqgtpcq dc ě

ż

cPC

Uπpt̂, cpcq, a0pcq, a1pcq|t, cqgtpcq dc
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for all t, t̂ P T , stage-two reporting plan c : C Ñ C, action plan contingent on the principal’s

recommendation a “ 0, i.e., a0 : C Ñ A, and action plan contingent on the principal’s

recommendation a “ 1, i.e., a1 : C Ñ A.

The principal’s original problem, Problem (O), is defined as follows:

max
π

ż

tPT

ż

cPC

ż

ωPΩ

πpω, t, cqφpωqgtpcqfptq dω dc dt

s.t. π satisfies IC1 and IC2.

A persuasion mechanism discloses information about the state by sending a recommen-

dation after eliciting the agent’s report of his private information in two stages. Instead of

adopting a persuasion mechanism, the principal can also disclose information about the state

by using an experiment, which does not require the agent to report private information. An

(direct) experiment is a mapping σ : Ω Ñ M ” r0, 1s where m “ Erω|σpωq “ ms. Namely,

the experiment sends a piece of message m P M contingent on the state, such that the

message directly informs the agent of the posterior mean state that sends m. An important

question is whether a persuasion mechanism can be implemented by an experiment or not,

i.e., whether there exists an experiment that provides the same expected utility to the princi-

pal as the persuasion mechanism. If there is such an experiment, then we say the persuasion

mechanism is non-discriminatory or entails no information discrimination; otherwise, the

persuasion mechanism is discriminatory, or entails information discrimination.

3 Example

Suppose the state ω, type t, and private cost c are all uniformly distributed, i.e., φpωq “ 1

for all ω P Ω, fptq “ 0.5 for both t P T , and gpcq “ 1 for all c P C. The realization of ω is

independent of t and c, but t and c are correlated with conditional PDFs being gLpcq “ 2´2c

and gHpcq “ 2c for all c P C.

Suppose the principal commits to offering an experiment to the agent. Figure 1 showcases

four simple experiments and the induced actions: the experiments in panels (a) and (b)

involve fully disclosing ω and not disclosing ω respectively; the experiment in panel (c)

involves upper censorship with cutoff ĉ, i.e., fully disclosing ω P r0, ĉs and pooling states
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c
1

1
ω

0

a “ 1

a “ 0

(a) Full disclosure

c
1

1
ω

0 0.5

a “ 1 a “ 0

(b) No disclosure

c
ĉ ĉ`1

2
ĉ

ĉ

1

1
ω

0

a “ 1

a “ 0

(c) Upper censorship

c
ĉĉ

2
ĉ

ĉ

1

1
ω

0

a “ 1

a “ 0

(d) Lower censorship

Figure 1: Four experiments

ω P pĉ, 1s; the experiment in panel (d) involves lower censorship with cutoff ĉ, i.e., pooling

states ω P r0, ĉs and fully disclosing ω P pĉ, 1s. The shaded area in each panel describes

the range of ω and c where the agent takes action a “ 1. As ω and c are uniformly

and independently distributed, the pair pω, cq falls into the shaded area with 50 percent

probability in each panel, implying that the principal earns an ex ante payoff of 0.5 under

each of the four experiments. In fact, not only these four experiments are equally good: by

applying the argument of Kolotilin et al. (2017) to the current example, it is easy to show

that every experiment leads to the same ex ante payoff to the principal, which is equal to

0.5. Moreover, their result implies that the principal’s ex ante payoff payoff remains 0.5 if

she is allowed to screen c, i.e., to provide different experiments to an agent with different

private costs.
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c
ĉĉ

2
ĉ

1´ ĉ

1

1

0

SHpcq

SLpcq

SHpcq ´ SLpcq

Figure 2: Surplus extracted from cost-c agent

To see that information discrimination is profitable, we begin with the upper censorship

experiment with cutoff ĉ, where ĉ is slightly below 0.5.

Then consider a menu of two experiments: the one designed for type L is the upper

censorship experiment with cutoff ĉ and the one designed for type H is the lower censorship

one with the same cutoff. Function SLpcq (resp. SHpcq) in Figure 2 shows the surplus the

principal can extract from an agent with cost c under the experiment designed for type L

(resp. H), and this function is derived from the height of the shaded area in panel (c) (resp.

(d)) of Figure 1.

By switching from the non-discriminatory persuasion to the discriminatory one which

entails a menu of experiments, the principal extracts the same surplus from type L. The

additional surplus extracted from type-H cost-c agent is given by the function SHpcq´SLpcq

in Figure 2, which has positive expectation under PDF gHpcq given ĉ ă 0.5. As a result, the

discriminatory persuasion is profitable, if each type chooses his designated experiment.

The upper and lower censorship experiments, labeled by L and H respectively in the
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following expressions, give cost-c agent expected payoffs of

ULpcq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ż 1

c

pω ´ cq dω, c P r0, ĉs;

p1´ ĉqp
ĉ` 1

2
´ cq, c P pĉ,

ĉ` 1

2
s;

0, c P p
ĉ` 1

2
, 1s;

UHpcq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0.5´ c, c P r0,
ĉ

2
s;

p1´ ĉqp
ĉ` 1

2
´ cq, c P p

ĉ

2
, ĉs;

ż 1

c

pω ´ cq dω, c P pĉ, 1s.

In particular, the ULpcq function single crosses the UHpcq function for one time and from above

when c increases from 0 to 1. It is easy to verify numerically that when ĉ is only slightly

below 0.5, say ĉ “ 0.475, PDF gL (resp. gH) evaluates UL (resp. UH) more favorably. Hence,

the menu of experiments is incentive compatible, i.e., each type at least weakly prefers his

designated experiment.

Finally, we remark that the above construction may not work under other PDFs. For

instance, we focus on ĉ “ 0.475 and replace the conditional PDFs by ĝLpcq “
1

2
` ln 2 ´

1

2
lnpc ` 1q, which is convex and decreasing, and ĝHpcq “

3

2
´ ln 2 `

1

2
lnpc ` 1q, which is

concave and increasing. These two PDFs are also flatter than gL and gH . We provide a

heuristic argument to see why the previous construction does not work under ĝL and ĝH .

With the change in PDFs, it is more difficult for SH ´ SL to have a positive expectation

under PDF ĝH . This is because that concave PDF ĝH overall puts relatively more weight on

the negative middle portion of SH ´ SL than the linear and increasing gH does. Meanwhile,

it is more difficult for the L type to prefer the experiment that is desigated for her. This

is because the flatter ĝL overall puts relatively more (resp. less) weight on the negative

(resp. positive) portion of UL ´ UH than gL. In fact, as we will formally show in Section 4,

under PDFs ĝL and ĝH , there does not exist any menu of experiments that is strictly more

profitable than the optimal single experiment.

4 Analysis and results

4.1 Equivalent problem

Define Upcq “

ż 1

c

pω ´ cq dΦpωq and Upcq “ maxtErωs ´ c, 0u, which are cost-c agent’s

expected payoffs under full and no disclosure, respectively. Let U be the set of convex
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functions U : C Ñ R bounded above by U and below by U .

We now define another problem, where the principal does not directly choose a persuasion

mechanism. Her choice variables are the two types’ indirect utility functions UL, UH P

U , where type-t cost-c agent earns expected utility Utpcq from the underlying persuasion

mechanism. This is Problem (I):

max
UL,UHPU

„

gp0qErωs ` fpLq
ż

cPC

ULpcqg
1
Lpcq dc` fpHq

ż

cPC

UHpcqg
1
Hpcq dc



s.t.

ż

cPC

ULpcqgLpcq dc ě

ż

cPC

UHpcqgLpcq dc,
ż

cPC

UHpcqgHpcq dc ě

ż

cPC

ULpcqgHpcq dc.

Note that gp0qErωs is a constant number and we can omit it from the maximization problem.

Lemma 1 shows that this newly defined problem is equivalent to the original problem

that the principal has.

Lemma 1. (a) For every persuasion mechanism π that satisfies the constraints in Problem

(O), the induced indirect utility functions for the two types satisfy all constraints in

Problem (I) and lead to the same value in Problem (I) as π does in Problem (O).

(b) For every pair of UL, UH P U that satisfies the constraints in Problem (I), there exists

a persuasion mechanism π that satisfies all constraints in Problem (O) and leads to

the same value in Problem (O) as the pair of UL, UH P U does in Problem (I).

4.2 Non-discriminatory persuasion benchmark

To study when it is optimal to adopt non-discriminatory or discriminatory persuasion, the

solution of the optimal non-discriminatory persuasion turns out to play an important role.

Hence, we identify a solution of the optimal non-discriminatory persuasion in this section.

If the principal does not elicit the agent’s stage-one private information, then the princi-

pal’s problem can be written as Problem (S) (where S refers to static) defined as follows:

max
UPU

ż

cPC

Upcqg1pcq dc.
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For each s P r0, 1s, we define an experiment σp0,sq as follows: let the experiment fully reveal

ω P r0, ss and pool ω P ps, 1s into the posterior mean Erω|ω ą ss.1 We call this experiment

an upper censorship experiment and denote the induced expected utility to cost-c agent

by Up0,sqpcq. By Assumption 1,
g1

g
is decreasing. Hence, g1 satisfies the downward single

crossing property (DSCP), i.e., there do not exist s1, s2 P C with s1 ă s2 such that

g1ps1q ă 0 and g1ps2q ą 0. The additive inverse of a function satisfying the DSCP is said to

satisfy the upward single crossing property (USCP). Given g1 satisfying the DSCP, we

identify one of its crossing points with the horizontal axis as follows:

ŝ ”

$

’

&

’

%

infts P C : g1psq ă 0u, if ts P C : g1psq ă 0u ‰ H;

1, if ts P C : g1psq ă 0u “ H.

(2)

When g1 satisfies Assumption 1, and thus, DSCP, Kolotilin et al. (2017) show that the

solution of Problem (S) can be implemented by an upper censorship experiment.

We define a candidate cutoff for an upper censorship experiment, s˚, as follows:

s˚ ” mints P r0, ŝs : s ď ŝ ď Erω|ω ą ss,

ż Erω|ωąss

s

pc´ sqg1pcq dc ď 0u. (3)

The last requirement in the brace is the first order condition, where the weak inequality

takes care of the potential corner solution s˚ “ 0. Notice that the other potential corner

solution s˚ “ 1 happens only if s˚ “ ŝ “ Erω|ω ą s˚s “ 1, for which the first order condition

holds as an equality. The requirement that s ď ŝ ď Erω|ω ą ss is essentially a second order

condition given g1 satisfies the DSCP. When there are multiple s˚ satisfying the above two

requirements, the minimization operator selects one s˚.

It is worth pointing out that, if s˚ ą 0, it must be the case that

ż Erω|ωąs˚s

s˚
pc´s˚qg1pcq dc “

0.2 Equivalently,

fpLq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1Lpcq dc` fpHq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1Hpcq dc “ 0. (4)

1As φ, gH , and gL are continuous, this experiment induces the same expected payoff to the principal and

to any cost-c agent as one that fully reveals ω P r0, sq and pools ω P rs, 1s. Hence, when s “ 1, we abuse

notation by letting Erω|ω ą 1s “ 1.

2To see this, if s˚ ą 0 and

ż Erω|ωąs˚
s

s˚

pc´ s˚qg1pcqdc ă 0, it must be the case that s˚ ď ŝ ă Erω|ω ą s˚s.

Then there exist s P p0, s˚q Ď r0, ŝs such that

ż Erω|ωąss

s

pc ´ sqg1pcqdc ă 0 and s ă ŝ ă Erω|ω ą ss. This

contradicts with the definition of s˚.
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The following lemma verifies that Up0,s˚q is a solution of Problem (S).

Lemma 2. Given the above defined s˚, Up0,s˚q, the indirect utility function induced by the

upper censorship experiment σp0,s˚q, solves Problem (S).

4.3 Necessary and sufficient condition

We now provide a necessary and sufficient condition on when non-discriminatory/discriminatory

disclosure is optimal. Moreover, we describe a feature of the experiment or the menu of ex-

periments that implements the optimal persuasion mechanism.

Proposition 1. (a) The optimal persuasion mechanism can be implemented by an exper-

iment if and only if for all c1 ă s˚ and c2 ą s˚,

g1Hpc1q

gLpc1q
ě ´

fpLq

fpHq

şErω|ωąs˚s
s˚

pc´ s˚qg1Lpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
ě

şErω|ωąs˚s
c2

pc´ c2qg
1
Hpcq dc

şErω|ωąs˚s
c2

pc´ c2qgLpcq dc
. (5)

(b) When condition (5) is satisfied, the optimal persuasion mechanism can be implemented

by σp0,s˚q; otherwise, in the menu of experiments that implements the optimal persua-

sion mechanism,

• there exist cL P C such that the experiment designed for L type is σp0,cLq;

• the L-type agent is indifferent between the two experiments.

When s˚ ą 0, due to (4), the key condition in the above proposition, (5), can be equiva-

lently be written as

g1Hpc1q

gLpc1q
ě

şErω|ωąs˚s
s˚

pc´ s˚qg1Hpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
ě

şErω|ωąs˚s
c2

pc´ c2qg
1
Hpcq dc

şErω|ωąs˚s
c2

pc´ c2qgLpcq dc
. (6)

This condition relies directly on g1H and gL as well as the endogenously solved s˚. The first

term in the inequality is the ratio of g1H and gL evaluated at c1 ă s˚, the second term can

be interpreted as the ratio of a weighted sum of g1H over a weighted sum of gL in the range

rs˚,Erω|ω ą s˚ss, and the last term is also a ratio of weighted sums (with weights different

from before) of g1H and gL in a range with either a higher upper limit of integration (if

c2 ą Erω|ω ą s˚s) or a higher lower limit of integration (if s˚ ă c2 ď Erω|ω ą s˚s).
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To establish the only if direction of part paq, we proceed by discussing two cases and

describing the construction of a menu of experiments illustrated in Figure 3.

Case I: Suppose the LHS inequality in (5) is violated for some c1 ă s˚. Obviously, s˚ ą 0

in this case. Let a new experiment designed for the L type be σp0,s˚´εq. Construct a new

experiment for H type as follows:

• fully revealing on r0, c1s Y rc1 ` δ1pεq, s
˚
s;

• pooling on pc1, c1 ` δ1pεqq;

• pooling on ps˚, 1s.

The choice of δ1pεq is such that the L type is indifferent between the experiments designed

for the L type and the H type. We remark that ε ą 0 should be sufficiently small such that

s˚ ´ ε ą 0 and c1 ` δ1pεq ă s˚.

Case II: Suppose the RHS inequality in (5) is violated for some c2 ą s˚. In this case,

s˚ ă 1. Let the new experiment designed for type L be σp0,s˚`εq. Construct a new experiment

for H type as follows:

• fully revealing on r0, s˚s Y rc2, c2 ` δ2pεqs;

• pooling on ps˚, c2q Y pc2 ` δ2pεq, 1s.

Again, the choice of δ2pεq is such that the L type is indifferent between the experiments

designed for the L type and the H type. Also, ε should be sufficiently small such that

s˚ ` ε ă 1 and c2 ` δ2pεq ă 1.
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experiment for L

experiment for H

0 1

ε

s˚

c10 1

δ1pεq

(a) LHS inequality in (5) is violated

experiment for L

experiment for H

ε

0 1

δ2pεq

s˚

c20 1

(b) RHS inequality in (5) is violated

Figure 3: Construction of a menu of experiments: reveal ω in the blue solid area, pool the

red loosely dotted area into one message, pool the gray densely dotted area into one message.

The formal analysis of why it is profitable to adopt this menu of experiments (which

give the cost-c agent expected payoffs of ULpcq and UHpcq respectively) is relegated to the

Appendix. Now, we utilize the group of linear PDFs gL and gH in Section 3, for which s˚ “ 0

and the RHS of condition (5) (and (6), too) is violated for every c2 ą s˚ “ 0, to gain some

intuition.

Suppose gLpcq “ 2 ´ 2c and gHpcq “ 2c, for which
g1Hpcq

gLpcq
is increasing. The binding

upward IC1 constraint can be rewritten as
ż

cPC

rUHpcq ´ ULpcqsgLpcq dc “ 0,

where UH´UL can be shown to satisfy the USCP. This equation as well as the USCP implies

the downward IC1 constraint
ż

cPC

rUHpcq ´ ULpcqsgHpcq dc “

ż

cPC

rUHpcq ´ ULpcqsgLpcq
gHpcq

gLpcq
dc ě 0.

Intuitively, the inequality holds because under Assumption 2, the relative weight imposed

on the positive (negative) part of UHpcq ´ ULpcq by gH is overall bigger (smaller) than it is

when the weight is gL. The change in the principal’s profit by adopting this menu is:

gpLq

ż

cPC

rULpcq ´ Up0,s˚qpcqsg
1
Lpcq dc` gpHq

ż

cPC

rUHpcq ´ Up0,s˚qpcqs
looooooooooomooooooooooon

UL´Up0,s˚q`UH´UL

g1Hpcq dc

“

ż

cPC

rULpcq ´ Up0,s˚qpcqs rgpLqg
1
Lpcq ` gpHqg

1
Hpcqs

looooooooooooooomooooooooooooooon

“0 for the linear PDFs in Section 3

dc` gpHq

ż

cPC

rUHpcq ´ ULpcqsg
1
Hpcq dc
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“gpHq

ż

cPC

rUHpcq ´ ULpcqsgLpcq
g1Hpcq

gLpcq
dc.

Since
g1Hpcq

gLpcq
is strictly increaing, the relative weight imposed by g1H on the positive (negative)

part of UHpcq´ULpcq is overall bigger (smaller) than it is when the weight is gL. Hence, the

change in profit is positive, i.e., adopting the menu of experiments is profitable.

Notice that the above argument does not apply to the group of nonlinear PDFs in Section

3 (ĝL and ĝH) which satisfies condition (5). To see this,
ĝ1Hpcq

ĝLpcq
is decreasing, and thus, the

relative weight imposed by ĝ1H on the positive (negative) part of UHpcq ´ ULpcq is overall

smaller (bigger) than it is when the weight is ĝL. Hence, the change in profit is negative.

The following relaxed variant of Problem (I), Problem (II), with the upward IC1 con-

straint, turns out to be useful in establishing Proposition 1:

max
UL,UHPU

„

fpLq

ż

cPC

ULpcqg
1
Lpcq dc` fpHq

ż

cPC

UHpcqg
1
Hpcq dc



s.t.

ż

cPC

ULpcqgLpcq dc ě

ż

cPC

UHpcqgLpcq dc.

The Lagrangian of Problem (II) is given by

L “fpLq
ż

cPC

ULpcqg
1
Lpcq dc` fpHq

ż

cPC

UHpcqg
1
Hpcq dc` λ

ż

cPC

rULpcq ´ UHpcqs gLpcq dc

“

ż

cPC

ULpcq rfpLqg
1
Lpcq ` λgLpcqs dc`

ż

cPC

UHpcq rfpHqg
1
Hpcq ´ λgLpcqs dc

“

ż

cPC

ULpcq

„

fpLq
g1Lpcq

gLpcq
` λ



gLpcq dc`

ż

cPC

UHpcq

„

fpHq
g1Hpcq

gLpcq
´ λ



gLpcq dc.

Let

L1 “

ż

cPC

ULpcq

„

fpLq
g1Lpcq

gLpcq
` λ



gLpcq dc,

and

L2 “

ż

cPC

UHpcq

„

fpHq
g1Hpcq

gLpcq
´ λ



gLpcq dc.

To establish the if direction in Part paq of Proposition 1, we assume that condition (5) is

satisfied. Then it sufficies to show that UL “ UH “ Up0,s˚q solves Problem (II), because the

omitted downward IC1 would be trivially satisfied. To show that UL “ UH “ Up0,s˚q solves

Problem (II), we first identify the candidate Lagrangian multiplier λ. Then, we show that

with this λ, the optimal UL for L1 is UL “ Up0,s˚q and the optimal UH for L2 is UH “ Up0,s˚q.

Hence, the solution of Problem (II) can be implemented by the experiment σp0,s˚q.
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To establish Part pbq of Proposition 1, recall the observation that σp0,s˚q is the optimal

single experiment from Lemma 2. Hence, we focus on the structure of the optimal menu. In

Step 1, we show that there exists cL P C such that the experiment designed for L type is

σp0,cLq. To achieve this, we begin with any pair of pUL, UHq with UL, UH P U satisfying the

constraint in Problem (II). We then construct certain ÛL P U that is implementable by an

upper censorship experiment so that pÛL, UHq satisfies the constraint in Problem (II) and

improves the principal’s payoff relative to pUL, UHq. In Step 2, we argue that the upward

IC1 constraint in the solution of Problem (II) must bind. In Step 3, we employ Assumption

2 as well as the structure of the menu of experiments to show that the omitted downward

IC1 constraint in Problem (I) is satisfied by the solution of Problem (II). Hence, the menu

of experiments implements the solution of Problem (I).

4.4 Easy-to-check conditions

We now give condition (5) a closer look. It directly depends on the conditional PDFs of c,

and indirectly depends on the PDFs of ω and t through the endogenously solved s˚.

We now introduce some easy-to-check sufficient conditions for condition (5) and negation

of it without relying on the integral expresssions therein.

Corollary 1. (a) When
g1Hpcq

gLpcq
is decreasing in c P C, the optimal persuasion mechanism

can be implemented by one experiment.

(b) When (4) holds and
g1Hpcq

gLpcq
is strictly increasing in c P

“

0,Erω|ω ą s˚s
‰

, the optimal

persuasion mechanism cannot be implemented by one experiment.

We call the term
g1H
gL

the cross hazard rate. Recall that
g1H
gL
“
g1H
gH
¨
gH
gL

. According to our

Assumptions 1 and 2,
g1H
gH

is decreasing and
gH
gL

is strictly increasing. Hence, the property

of the cross hazard rate depends on the dominant force between the competing two. In the

limiting case where gH Ñ gL, i.e., stage-one type is close to independent of c P C, the cross

hazard rate is decreasing, and accordingly, the optimal persuasion entails no information

discrimination. Put differently, the H type has to dominate the L type in a strong way, in

order for screening to be valuable.

18



We now restrict attention to monotone gL and gH . If gH and gL are both increasing

or decreasing, and gH is concave, then the cross hazard rate is decreasing; if gH is strictly

increasing and convex, and gL is strictly decreasing, then the cross hazard rate is strictly

increasing. The PDFs gL and gH in Section 3 fit into the latter case, although
ĝ1H
ĝL

therein is

decreasing.

To see why (4) is imposed in Part (b), we modify only one PDF in the group of linear

PDFs in Section 3 — let gHpcq “ 0.5 ` c. In this case, the cross hazard rate is still strictly

increasing, s˚ “ 0, and

ż Erω|ωąs˚s

s˚
pc´ s˚qg1pcq dc ă 0. Yet, (5) is satisfied, meaning that the

optimal persuasion mechanism can be implemented by one experiment.

For non-monotone gL and gH , we present another example to show that the optimal

persuasion may or may not involve information discrimination.

Example 1. We now consider two log-concave PDFs in the beta distribution family: gLpcq “

λcα´1
p1 ´ cqβ´1 and gHpcq “ λcβ´1

p1 ´ cqα´1 with 1 ă α ă β, where λ is such that these

functions are well-defined PDFs. Given the current parameter restrictions, gL and gH are

single-peaked at
α ´ 1

α ` β ´ 2
and

β ´ 1

α ` β ´ 2
, respectively. Moreover, ω and t are both assumed

to be uniform distributions. It is easy to verify that Assumption 2 is satisfied.

For α “ 2.7, β “ 3.3, g is log-concave, and the cross hazard rate is decreasing. In this

case, the optimal persuasion mechanism can be implemented by one experiment.

For α “ 2, β “ 4, g is log-concave, and the peak of the cross hazard rate is reached when

c “ 0.65. One can also derive that s˚ “ 0.27 and that Erω|ω ą s˚s ă 0.65. In this case, the

cross hazard rate is strictly increasing in the interval
“

0,Erω|ω ą s˚s
‰

. Hence, the optimal

persuasion mechanism involves information discrimination.

Notice that under the second of group parameters, the two PDFs are more “distant” from

each other compared to those in the first group.

5 Concluding remarks

This paper studies a persuasion problem where the agent gradually learns his private infor-

mation in two stages. In stage one, the agent observes a binary type, which conveys noisy

information about his private cost, and in stage two, the agent perfectly observes the private
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cost. We show that the optimal persuasion mechanism may or may not involve informa-

tion discrimination and provide necessary and sufficient conditions on when the optimum

necessitates information discrimination.

A natural extension of the model is to go beyond the binary-type case. In fact, it

is possible to follow the argument of the current paper to provide conditions under which

information discrimination is or is not profitable. We provide the details in Online Appendix

B. The general structure of the optimal persuasion mechanism remains an open question.
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A Appendix A: Proofs

A.1 Proof of Lemma 1

We establish this lemma by showing that Problem (O) and Problem (I) have equivalent

constraints and objective functions.

Step 1: Establish the equivalence between IC2 and UL, UH P U .

The following result, directly implied by Theorem 1 of Kolotilin et al. (2017), is crucial

in simplifying IC2.

Lemma 3. For each t P T , the following three statements are equivalent:

1. Ut P U ;

2. there exists πp¨, t, ¨q satisfying IC2 that gives cost-c agent expected payoff Utpcq;

3. there exists an experiment σ that gives cost-c agent expected payoff Utpcq.
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Hence, for any π satisfying IC2 and t P T , we can let Ut P U denote the indirect utility

function for type-t agent. Conversely, given UL, UH P U , there exists a persuasion mechanism

π satisfying IC2.

Step 2: Establish the equivalence in principal’s objective functions.

Given a persuasion mechanism satisfying IC2 and its induced UL and UH functions, one

can follow the argument of Kolotilin et al. (2017) and equivalently write the principal’s payoff

extracted from type-t agent as follows:

ż

cPC

ż

ωPΩ

πpω, t, cqφpωqgtpcq dω dc “ gtp0qErωs `
ż

cPC

Utpcqg
1
tpcq dc.

Hence, the principal’s ex ante payoff can be equivalently written as

gp0qErωs ` fpLq
ż

cPC

ULpcqg
1
Lpcq dc` fpHq

ż

cPC

UHpcqg
1
Hpcq dc,

where the first-term is a constant number.

Step 3: Establish the equivalence between IC1 and the two inequality con-

straints in Problem (I).

Recall that IC1 requires that the agent has no incentive to deviate starting from stage one.

Notice that in expression (1), i.e., the IC2 condition, t only affects a cost-c agent’s expected

payoff through the π function, and thus, t can also be interpreted as a misreported type.

Thus, expression (1) implies that an agent, even if misreported in stage one, will truthfully

report and follow recommendation in stage two; that is,

Uπpt̂, c, 0, 1|t, cq ě Uπpt̂, ĉ, a0, a1|t, cq

for all t, c, t̂, ĉ, a0, a1. As a result, a persuasion mechanism satisfying IC2 satisfies IC1, if and

only if the induced UL and UH functions satisfy

ż

cPC

Utpcq dGtpcq ě

ż

cPC

Ut̂pcq dGtpcq

for all t, t̂ P T .
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A.2 Proof of Lemma 2

Given the upper censorship experiment σp0,sq, the induced expected utility for an agent with

cost c is given as follows:

Up0,sqpcq “

$

’

’

’

’

’

&

’

’

’

’

’

%

pErω|ω ą cs ´ cqp1´ Φpcqq, c P r0, ss;

pErω|ω ą ss ´ cqp1´ Φpsqq, c P
`

s,Erω|ω ą ss
‰

;

0, c P
`

Erω|ω ą ss, 1
‰

.

The derivative of

ż

cPC

Up0,sqpcqg
1
pcq dc with respect to s is

φpsq

ż Erω|ωąss

s

pc´ sqg1pcq dc.

We now identify one optimal s to maximize

ż

cPC

Up0,sqpcqg
1
pcq dc by discussing three cases.

Case 1: Erω|ω ą ss ă ŝ. Because φpsq

ż Erω|ωąss

s

pc´ sqg1pcq dc ě 0, it is weakly profitable

to keep increasing s.

Case 2: s ą ŝ. Because φpsq

ż Erω|ωąss

s

pc ´ sqg1pcq dc ď 0, it is weakly profitable to keep

decreasing s.

Case 3: s ď ŝ ď Erω|ω ą ss. We now show that φpsq

ż Erω|ωąss

s

pc ´ sqg1pcq dc satisfies

DSCP in s when s increases within this case.

To establish DSCP, suppose

ż Erω|ωąss

s

pc´ sqg1pcq dc ď 0.

Now fix any s1 P C such that s1 ą s and s1 ď ŝ ď Erω|ω ą s1s.

ż Erω|ωąs1s

s1
pc´ s1qg1pcq dc

“

ż ŝ

s1

c´ s1

c´ s
loomoon

increasing in c

pc´ sqg1pcq
looooomooooon

ě0

dc`

ż Erω|ωąs1s

ŝ

c´ s1

c´ s
loomoon

increasing in c

pc´ sqg1pcq
looooomooooon

ď0

dc

ď

ż ŝ

s1

ŝ´ s1

ŝ´ s
pc´ sqg1pcq

looooooooomooooooooon

ě0

dc`

ż Erω|ωąs1s

ŝ

ŝ´ s1

ŝ´ s
pc´ sqg1pcq

looooooooomooooooooon

ď0

dc
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ď

ż ŝ

s

ŝ´ s1

ŝ´ s
pc´ sqg1pcq dc`

ż Erω|ωąss

ŝ

ŝ´ s1

ŝ´ s
pc´ sqg1pcq dc

“
ŝ´ s1

ŝ´ s

ż Erω|ωąss

s

pc´ sqg1pcq dc ď 0.

To this end, we have established the DSCP of

ż Erω|ωąss

s

pc´ sqg1pcq dc in s when s ď ŝ ď

Erω|ω ą ss. Hence, the smallest s˚ in r0, ŝs such that s˚ ď ŝ ď Erω|ω ą s˚s and

ż Erω|ωąs˚s

s˚
pc´ s˚qg1pcq dc ď 0

is optimal.

A.3 A technical result

Lemma 4. For any function w : C Ñ R satisfying the DSCP,

1. whenever

ż 1

0

wpcqgLpcq dc ď 0 (resp., ă 0), it must be true that

ż 1

0

wpcqgHpxq dc ď 0

(resp., ă 0);

2. whenever

ż 1

0

wpcqgHpcq dc ě 0 (resp., ą 0), it must be true that

ż 1

0

wpcqgLpxq dc ě 0

(resp., ą 0).

Proof. Fix any x̂ P C such that wpcq ě 0 for all c ď x̂ and wpcq ď 0 for all c ě x̂. Choose

α ą 0 such that α
gHpx̂q

gLpx̂q
“ 1. Then for all x ă x̂, α

gHpxq

gLpxq
ă 1; for all x ą x̂, α

gHpxq

gLpxq
ą 1.

Hence,

ż 1

0

wpcqgHpcq dc “
1

α

ż 1

0

wpcqgLpcqα
gHpcq

gLpcq
dc

“
1

α

ż x̂

0

wpcqgLpcq
loooomoooon

ě0

α
gHpcq

gLpcq
loomoon

ď1

dc`
1

α

ż 1

x̂

wpcqgLpcq
loooomoooon

ď0

α
gHpcq

gLpcq
loomoon

ě1

dc

ď
1

α

ż x̂

0

wpcqgLpcq dc`
1

α

ż 1

x̂

wpcqgLpcq dc

“
1

α

ż 1

0

wpcqgLpcq dc.

The fact that

ż 1

0

wpcqgHpcq dc ď
1

α

ż 1

0

wpcqgLpcq dc directly implies that the lemma holds.
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A.4 Comparative statics for the non-discriminatory solution

In the hypothetical situation that the agent’s type t P T is publically observable, the princi-

pal’s problem is

max
UtPU

ż

cPC

Utpcqg
1
tpcq dc. (7)

By replacing the PDF g with gt in (2), we can define a crossing point of g1t as ŝt (3). Similarly,

by replacing the PDF g with gt in (3), we can define an optimal cutoff of problem (7) as s˚t

(namely, σp0,s˚t q is an experiment that implements the solution of (7)).

By Assumptions 1 and 2, it is immediate that ŝL ă ŝ ă ŝH . We now describe the

connection between the cutoff values s˚L and s˚H as well as s˚.

Lemma 5. It must be the case that s˚L ď s˚ ď s˚H .

Proof. In this proof, we utilize the assumption that
gH
gL

is strictly increasing to verify that

s˚L ď s˚H . The fact that s˚L ď s˚ and s˚ ď s˚H can be established in a similar way due to the

strict monotonicity of
gH
g

and
g

gL
.

Suppose by way of contradiction that s˚L ą s˚H . According to the definitions of s˚H and

s˚L, the supposition that s˚L ą s˚H , and the observation that ŝL ă ŝH , we have the following

ranking:

s˚H ă s˚L ď ŝL ă ŝH ď Erω|ω ą s˚Hs ă Erω|ω ą s˚Ls.

Define wpcq “ Up0,s˚Lqpcq ´ Up0,s˚Hqpcq, which is a non-negative and single-peak function

satisfying wp0q “ wp1q “ 0. Hence, w1 satisfies the DSCP. By the definition of s˚L, i.e., s˚L

is the smallest number in r0, ŝLs such that s˚L ď ŝL ď Erω|ω ą s˚Ls and

ż

cPC

Up0,s˚Lqpcqg
1
pcq dc

is maximized, and the above ranking, one must have

ż

cPC

wpcqg1Lpcq dc ą 0. Then by inte-

gration by parts, we have

ż

cPC

w1pcqgLpcq dc “ ´

ż

cPC

wpcqg1Lpcq dc ă 0. Now by Lemma 4,
ż

cPC

wpcqg1Hpcq dc “ ´

ż

cPC

w1pcqgHpcq dc ą 0. This means that

ż

cPC

rUp0,s˚Lq ´ Up0,s
˚
Hq
spcqg1Hpcq dc ą 0.

A contradiction with the optimality of s˚H .

To this end, we have established that s˚L ď s˚H .
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A.5 Proof of Proposition 1

Part (a). Proof for the if direction.

Case I: s˚ ą 0. Recall that in this case, (4) holds.

Step 1. We first construct a candidate Lagrangian multiplier λ ě 0.

Recall that notations s˚ and ŝ are defined in Section 4.2. Notations s˚L, s˚H , ŝL, and ŝH

are defined in Section A.4.

Define

λ ” ´fpLq

şErω|ωąs˚s
s˚

pc´ s˚qg1Lpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
. (8)

We first show that λ ě 0.

By Lemma 5, s˚L ď s˚, implying that Erω|ω ą s˚Ls ď Erω|ω ą s˚s.

If s˚ ě ŝL, then
ż Erω|ωąs˚s

s˚
pc´ s˚qg1Lpcq dc ď 0,

because g1L is non-positive for c ě ŝL.

If s˚ ă ŝL, then it must be the case that

s˚L ď s˚ ă ŝL ă Erω|ω ą s˚Ls ď Erω|ω ą s˚s.

Following the same argument as in Case 3 in the proof of Lemma 2, we can show that

ż Erω|ωąs˚s

s˚
pc´ s˚qg1Lpcq dc ď 0.

Hence, the right hand side of (8) is nonnegative, implying that λ ě 0. This completes

the analysis of Step 1.

Step 2. Given the above λ, we show that among all candidates in U , Up0,s˚q maximizes

L1.

Since

„

fpLq
g1Lpcq

gLpcq
` λ



gLpcq satisfies DSCP, the optimal UL can be implemented by an

upper censorship experiment.

By (8), we have

ż Erω|ωąs˚s

s˚
pc´ s˚q

„

fpLq
g1Lpcq

gLpcq
` λ



gLpcq dc “ 0.
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Because of the monotonicity of
g1L
gL

and the definition of λ,

„

fpLq
g1Lpcq

gLpcq
` λ



gLpcq must be

nonnegative when evaluated at c ď s˚ and nonpositive when evaluated at c ě Erω|ω ą s˚s.

We can modify the argument in Lemma 2 and show that for all s ă s˚ (resp. s ą s˚),

ż Erω|ωąss

s

pc´ sq

„

fpLq
g1Lpcq

gLpcq
` λ



gLpcq dc ě 0 (resp. ď 0).

Hence, the optimal UL to maximize L1 can be implemented by σp0,s˚q.

This completes the analysis of Step 2.

Step 3. Show that given λ, among all candidates in U , Up0,s˚q maximizes L2. To do

this, we first identify an upper bound of L2 when UH P U . Then we show that UH “ Up0,s˚q

attains this upper bound.

Given this λ,

L2 “

ż

cPC

UHpcq

„

fpHq
g1Hpcq

gLpcq
´ λ



gLpcq dc

“fpHq

ż

cPC

UHpcq

»

—

—

—

—

–

g1Hpcq `
fpLq

fpHq

şErω|ωąs˚s
s˚

pc̃´ s˚qg1Lpc̃q dc̃
şErω|ωąs˚s
s˚

pc̃´ s˚qgLpc̃q dc̃
¨ gLpcq

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

”Ψpcq

fi

ffi

ffi

ffi

ffi

fl

dc

“fpHq

ż s˚

0

UHpcqΨpcq dc` fpHq

ż 1

s˚
UHpcqΨpcq dc

“fpHq

ż s˚

0

UHpcqΨpcq dc´ fpHq

«

ż 1

s˚
UHpcq d

ż Erω|ωąs˚s

c

Ψpĉq dĉ

ff

“fpHq

ż s˚

0

UHpcqΨpcq dc´ fpHq

„

UHp1q
loomoon

“0

ż Erω|ωąs˚s

1

Ψpĉq dĉ

´ UHps
˚
q

ż Erω|ωąs˚s

s˚
Ψpĉq dĉ´

ż 1

s˚

ż Erω|ωąs˚s

c

Ψpĉq dĉ ¨ U 1Hpcq dc



. (9)

Notice that

ż 1

s˚

ż Erω|ωąs˚s

c

Ψpĉq dĉ ¨ U 1Hpcq dc

“´

ż 1

s˚
U 1Hpcq d

ż Erω|ωąs˚s

c

pĉ´ cqΨpĉq dĉ

“´ U 1Hp1q
loomoon

“0

ż Erω|ωąs˚s

1

pĉ´ 1qΨpĉq dĉ` U 1Hps
˚
q

ż Erω|ωąs˚s

s˚
pĉ´ s˚qΨpĉq dĉ
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`

ż 1

s˚

ż Erω|ωąs˚s

c

pĉ´ cqΨpĉq dĉ
loooooooooooooomoooooooooooooon

ď0 as we show below

¨ U2Hpcq
loomoon

ě0

dc

ďU 1Hps
˚
q

ż Erω|ωąs˚s

s˚
pĉ´ s˚qΨpĉq dĉ.

The inequality follows from the observation that
ż Erω|ωąs˚s

c

pĉ´ cqΨpĉq dĉ

“

ż Erω|ωąs˚s

c

pĉ´ cq

«

g1Hpĉq `
fpLq

fpHq

şErω|ωąs˚s
s˚

pc̃´ s˚qg1Lpc̃q dc̃
şErω|ωąs˚s
s˚

pc̃´ s˚qgLpc̃q dc̃
¨ gLpĉq

ff

dĉ

“

«

şErω|ωąs˚s
c

pĉ´ cqg1Hpĉq dĉ
şErω|ωąs˚s
c

pĉ´ cqgLpĉq dĉ
`
fpLq

fpHq

şErω|ωąs˚s
s˚

pc̃´ s˚qg1Lpc̃q dc̃
şErω|ωąs˚s
s˚

pc̃´ s˚qgLpc̃q dc̃

ff

ż Erω|ωąs˚s

c

pĉ´ cqgLpĉq dĉ,

which is equal to 0 for c “ s˚ by (4) and is nonpositive for c ą s˚ by (5).

Thus,

p9q

ďfpHq

»

—

—

—

–

ż s˚

0

UHpcq Ψpcq
loomoon

ě0 for căs˚ by p5q

dc` UHps
˚
q

ż Erω|ωąs˚s

s˚
Ψpcq dc

looooooooomooooooooon

ě0 as shown below

`U 1Hps
˚
q

ż Erω|ωąs˚s

s˚
pc´ s˚qΨpcq dc

looooooooooooooomooooooooooooooon

“0

fi

ffi

ffi

ffi

fl

ďfpHq

«

ż s˚

0

UpcqΨpcq dc` Ups˚q

ż Erω|ωąs˚s

s˚
Ψpcq dc

ff

.

The second inequality follows from the observation above that

ż Erω|ωąs˚s

c

pĉ´ cqΨpĉq dĉ takes

the value 0 and is nonpositive when c ą s˚, and thus, ´

ż Erω|ωąs˚s

s˚
Ψpĉq dĉ, its derivative at

c “ s˚, is no greater than 0.

To this end, we have established an upper bound of L2 when UH P U .

Now we want to show that UH “ Up0,s˚q attains the above upper bound of L2. When

UH “ Up0,s˚q, U
1
Hpcq is constantly equal to U

1

Hps
˚
q on rs˚,Erω|ω ą s˚ss, and is equal to 0 on

pErω|ω ą s˚s, 1s. As a result,
ż 1

s˚

ż Erω|ωąs˚s

c

Ψpĉq dc ¨ U 1Hpcq dc “U
1

Hps
˚
q

ż Erω|ωąs˚s

s˚

ż Erω|ωąs˚s

c

Ψpĉq dĉ dc

“U
1

Hps
˚
q

ż Erω|ωąs˚s

s˚
pĉ´ s˚qΨpĉq dĉ “ 0,
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where the second equality is derived by changing the order of integration. Hence,

L2 “ fpHq

«

ż s˚

0

UpcqΨpcq dc` Ups˚q

ż Erω|ωąs˚s

s˚
Ψpcq dc

ff

.

Therefore, UH “ Up0,s˚q attains the above upper bound of L2. It completes the analysis of

Step 3.

Case II: s˚ “ 0.

We follow the argument of Case I till establishing an upper bound of L2 in Step 3:

p9q ďfpHq UHp0q
loomoon

“Erωs

ż Erωs

0

Ψpcq dc` fpHq U 1Hp0q
loomoon

“´1

ż Erωs

0

pc´ 0qΨpcq dc

“fpHq

ż Erωs

0

pErωs ´ cqΨpcq dc.

To show that UH “ Up0,0q attains the above upper bound of L2, notice that

L2 “

ż

cPC

UHpcq

„

fpHq
g1Hpcq

gLpcq
´ λ



gLpcq dc

“fpHq

ż 1

0

UHpcqΨpcq dc

“fpHq

ż Erωs

0

pErωs ´ cqΨpcq dc.

Notice that the second and third equalities utilize the definitions of Ψpcq and Up0,0q.

To this end, we have established the proof for Case II.

Part (a). Proof for the only if direction.

We show that if condition (5) fails, then we can construct a menu of experiments that

performs better than the single experiment σp0,s˚q.

Case I: Suppose that there is some c1 ă s˚ such that the LHS inequality in (5) is violated,

or equivalently, Ψpc1q ă 0, where

Ψpcq ” g1Hpcq `
fpLq

fpHq

şErω|ωąs˚s
s˚

pc´ s˚qg1Lpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
¨ gLpcq. (10)

It is immediate that s˚ ą 0.

As we descibe in the text, let a new experiment designed for the L type be σp0,s˚´εq and

construct a new experiment for H type as follows:
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• fully revealing on r0, c1s Y rc1 ` δ1pεq, s
˚
s;

• pooling on pc1, c1 ` δ1pεqq;

• pooling on ps˚, 1s.

The choice of δ1pεq is such that

ż

cPC

Up0,s˚´εqpcqgLpcq dc “

ż

cPC

Uδ1pεqpcqgLpcq dc (11)

and ε ą 0 should be sufficiently small such that s˚´ε ą 0 and c1`δ1pεq ă s˚, where Uδ1pεqpcq

refers to the expected utility cost-c agent receives from experiment designed for the H type.

The expression of Uδ1pεqpcq is given as follows:

Uδ1pεqpcq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pErω|ω ě cs ´ cqp1´ Φpcqq, c P r0, c1q;

pErω|ω ě c1s ´ cqp1´ Φpc1qq, c P
“

c1,Erω|c1 ď ω ă c1 ` δ1pεqs
˘

;

pErω|ω ě c1 ` δ1pεqs ´ cqp1´ Φpc1 ` δ1pεqqq, c P
“

Erω|c1 ď ω ă c1 ` δ1pεqs, c1 ` δ1pεq
˘

;

pErω|ω ě cs ´ cqp1´ Φpcqq, c P rc1 ` δ1pεq, s
˚
q;

pErω|ω ě s˚s ´ cqp1´ Φps˚qq, c P
“

s˚,Erω|ω ě s˚s
˘

;

0, c P
“

Erω|ω ě s˚s, 1
‰

,

The principal’s payoff under the menu of experiments is equal to

gp0qErωs ` fpLq
ż

cPC

Up0,s˚´εqpcqg
1
Lpcq dc` fpHq

ż

cPC

Uδ1pεqpcqg
1
Hpcq dc. (12)

The partial derivative of (12) with respect to ε is

´fpLqφps˚ ´ εq

ż Erω|ωąs˚´εs

s˚´ε

pc´ s˚ ` εqg1Lpcq dc.

The partial derivative of (12) with respect to δ1pεq, is given by

´fpHqφpc1`δ1pεqq

ż c1`δ1pεq

Erω|ωPpc1,c1`δ1pεqqs
pc1 ` δ1pεq ´ cqg

1
Hpcq dc.

By applying the implicit function theorem to (11) we have

δ11pεq “
φps˚ ´ εq

şErω|ωąs˚´εs
s˚´ε

pc´ s˚ ` εqgLpcq dc

φpc1`δ1pεqq
şc1`δ1pεq

Erω|ωPpc1,c1`δ1pεqqspc1 ` δ1pεq ´ cqgLpcq dc
.
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Putting the above three parts together, the derivative of (14) with respect to ε, evaluated

at ε “ 0, can be rewritten as φps˚q times

´ fpLq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1Lpcq dc

´ fpHq

şc1`δ1pεq

Erω|ωPpc1,c1`δ1pεqqspc1 ` δ1pεq ´ cqg
1
Hpcq dc|δ1pεqÑ0

şc1`δ1pεq

Erω|ωPpc1,c1`δ1pεqqspc1 ` δ1pεq ´ cqgLpcq dc|δ1pεqÑ0

ż Erω|ωąs˚s

s˚
pc´ s˚qgLpcq dc

“´ fpLq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1Lpcq dc´ fpHq

g1Hpc1q

gLpc1q

ż Erω|ωąs˚s

s˚
pc´ s˚qgLpcq dc ą 0,

where the equality follows from the L’Hospital Rule and the inequality follows from (10).

Case II: Suppose that there is some c2 ą s˚ such that the RHS inequality in (5) is

violated. It is clear that s˚ ă 1. By the definition of Ψ in (10), it is equivalent to assume

that
ż Erω|ωąs˚s

c2

pc´ c2qΨpcq dc ą 0.

Without loss, suppose that c2 ă 1.

As described in the text, let the new experiment designed for type L be σp0,s˚`εq and the

one for H type be:

• fully revealing on r0, s˚s Y rc2, c2 ` δ2pεqs;

• pooling on ps˚, c2q Y pc2 ` δ2pεq, 1s.

Again, the choice of δ2pεq is such that

ż

cPC

Up0,s˚`εqpcqgLpcq dc “

ż

cPC

Uδ2pεqpcqgLpcq dc (13)

and ε should be sufficiently small such that s˚ ` ε ă 1 and c2 ` δ2pεq ă 1, where Uδ2pεqpcq

refers to the expected utility cost-c agent receives from experiment designed for the H type.

Expression Uδ2pεqpcq can take one of the following three forms specified below.
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1. If X ” E
“

ω|ω P rs˚, c2q Y pc2 ` δ2pεq, 1s
‰

ď c2, then

Uδpεqpcq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ż 1

c

pω ´ cqφpωq dω, c P r0, s˚q;
ż 1

s˚
pω ´ cqφpωq dω, c P rs˚, Xq;

ż c2`δ2pεq

c2

pω ´ cqφpωq dω, c P rX, c2q;
ż c2`δ2pεq

c

pω ´ cqφpωq dω, c P rc2, c2 ` δ2pεqs;

0, c P rc2 ` δ2pεq, 1s.

2. If c2 ă X ď c2 ` δ2pεq, then

Uδ2pεqpcq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ż 1

c

pω ´ cqφpωq dω, c P r0, s˚q;
ż 1

s˚
pω ´ cqφpωq dω, c P rs˚, c2q;

ż 1

s˚
pω ´ cqφpωq dω ´

ż c

c2

pω ´ cqφpωq dω, c P rc2, Xq;
ż c2`δ2pεq

c

pω ´ cqφpωq dω, c P rX, c2 ` δ2pεqq;

0, c P rc2 ` δ2pεq, 1s.

3. If X ą c2 ` δ2pεq, then

Uδ2pεqpcq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ż 1

c

pω ´ cqφpωq dω, c P r0, s˚q;
ż 1

s˚
pω ´ cqφpωq dω, c P rs˚, c2q;

ż 1

s˚
pω ´ cqφpωq dω ´

ż c

c2

pω ´ cqφpωq dω, c P rc2, c2 ` δ2pεqq;
ż 1

s˚
pω ´ cqφpωq dω ´

ż c2`δ2pεq

c2

pω ´ cqφpωq dω, c P rc2 ` δ2pεq, Xq;

0, c P rX, 1s.

The partial derivative of the following expression

gp0qErωs ` fpLq
ż

cPC

Up0,s˚`εqpcqg
1
Lpcq dc` fpHq

ż

cPC

Uδ2pεqpcqg
1
Hpcq dc, (14)

with respect to ε is

fpLqφps˚ ` εq

ż Erω|ωąs˚`εs

s˚`ε

pc´ s˚ ´ εqg1Lpcq dc.

32



The partial derivative of (14) with respect to δ2pεq is given by

fpHqφpc2 ` δ2pεqq

ż c2`δ2pεq

X

pc2 ` δ2pεq ´ cqg
1
Hpcq dc.

By applying the implicit function theorem to (13), we have

δ12pεq “
φps˚ ` εq

şErω|ωąs˚`εs
s˚`ε

pc´ s˚ ´ εqgLpcq dc

φpc2 ` δ2pεqq
şc2`δ2pεq

X
pc2 ` δ2pεq ´ cqgLpcq dc

.

Putting the above three parts together, the derivative of (14) with respect to ε, evaluated

at ε “ 0, can be rewritten as φps˚q times

fpLq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1Lpcq dc` fpHq

şErω|ωąs˚s
c2

pc´ c2qg
1
Hpcq dc

şErω|ωąs˚s
c2

pc´ c2qgLpcq dc

ż Erω|ωąs˚s

s˚
pc´ s˚qgLpcq dc ą 0.

In both cases, we have shown that introducing information discrimination is strictly more

profitable than adopting the optimal non-discriminatory persuasion.

Part (b). Omitted proof.

Step 1. Fix any pUL, UHq in U that satisfies the upward IC1 constraint in Problem (II).

We now construct ÛL such that

1. there exists cL P r0, 1s, for which σp0,cLq implements ÛL, namely ÛL “ Up0,cLq;

2. the upward IC1 constraint is satisfied at pÛL, UHq;

3. the principal gets a weakly higher payoff from pÛL, UHq than from pUL, UHq.

To construct ÛL, we solve Problem (III) below.

max
ÛLPU

ż

cPC

ÛLpcqg
1
Lpcq dc

s.t.

ż

cPC

ÛLpcqgLpcq dc ě

ż

cPC

UHpcqgLpcq dc.

Let cL be such that

ż

cPC

Up0,cLqpcqgLpcq dc “

ż

cPC

UHpcqgLpcq dc.

If cL ď s˚L, then we let ÛL be Up0,s˚Lq, which satisfies the upward IC1 constraint. Because

Up0,s˚Lq maximizes the objective function even without any constraint, it must be the solution

of Problem (III).
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If cL ą s˚L and thus, cL ą 0, then we let ÛL be Up0,cLq. To see that Up0,cLq is optimal,

define

λ ” ´

şErω|ωącLs
cL

pc´ cLqg
1
Lpcq dc

şErω|ωącLs
cL

pc´ cLqgLpcq dc
,

which can be shown to be nonnegative. It is clear that the coefficient of ÛL in the Lagrangian

of Problem (III), g1L`λgL, exhibits DSCP. As a result, following Proposition 1, the experiment

that implements the optimal ÛL must involve upper censorship. Given the above λ, the

verification of the first order condition and the second order condition concludes that ÛL “

Up0,cLq is indeed a solution of Problem (III).

Step 2. Show that the upward IC1 constraint must bind in Problem (II).

In the Lagrangian of Problem (II), we assume by way of contradiction that the upward

IC1 constraint is slack. In this case, λ “ 0. Then first and second order conditions in L1

and L2 show that UL “ Up0,s˚Lq and UH “ Up0,s˚Hq constitute one optimal solution. By the

observation that s˚L ď s˚H from Lemma 5, the upward IC1 constraint is either violated or

binding. This is a contradiction with the supposition that the constraint is slack.

Step 3. Show that the solution of Problem (II) solves Problem (I).

It suffices to show that the binding upward IC1 constraint in Problem (II), i.e.,

ż

cPC

Up0,cLqpcqgLpcq dc “

ż

cPC

UHpcqgLpcq dc

implies the downward IC1 constraint in Problem (I), i.e.,

ż

cPC

Up0,cLqpcqgHpcq dc ď

ż

cPC

UHpcqgHpcq dc.

Towards this end, we shall show that the function Up0,cLq ´ UH satisfies DSCP. We prove by

contradiction. Suppose that there exist s1 ă s2 such that that

Up0,cLqps1q ă UHps1q, Up0,cLqps2q ą UHps2q.

By the definition of Up0,cLq, cL ă s1 ă s2 ă Erω|ω ą cLs and

Up0,cLqpcLq ě UHpcLq. (15)
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Then we have

UHpcLq ` U
1
Hps1qps1 ´ cLq

ěUHps1q

ąUp0,cLqps1q

“Up0,cLqpcLq ` U
1
p0,cLq

ps1qps1 ´ cLq. (16)

The first inequality holds because UH is convex. The equality holds as Up0,cLq is linear

between cL and Erω|ω ą cLs. Expressions (15) and (16) imply that U 1Hps1q ą U 1p0,cLqps1q.

Then we have that

UHps2q

ěUHps1q ` U
1
Hps1qps2 ´ s1q

ąUp0,cLqps1q ` U
1
p0,cLq

ps1qps2 ´ s1q

“Up0,cLqps2q.

A contraction. Thus, Up0,cLq´UH satisfies DSCP. The downward IC1 constraint follows from

Lemma 4.

A.6 Proof of Corollary 1

Part (a). If s˚ “ 0, then (5) equivalently requires that for all c2 ą s˚,

´
fpLq

fpHq

şErω|ωąs˚s
s˚

pc´ s˚qg1Lpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
ě

şErω|ωąs˚s
c2

pc´ c2qg
1
Hpcq dc

şErω|ωąs˚s
c2

pc´ c2qgLpcq dc
.

But s˚ “ 0 implies that

´
fpLq

fpHq

şErω|ωąs˚s
s˚

pc´ s˚qg1Lpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
ě

şErω|ωąs˚s
s˚

pc´ s˚qg1Hpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
.

As a result, it sufficies to show that

şErω|ωąs˚s
s˚

pc´ s˚qg1Hpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
ě

şErω|ωąs˚s
c2

pc´ c2qg
1
Hpcq dc

şErω|ωąs˚s
c2

pc´ c2qgLpcq dc
, (17)

which is part of (6).
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If s˚ ą 0, then (5) is equivalent to (6).

Hence, in both cases, it sufficies to show that (6) holds.

Assume that
g1Hpcq

gLpcq
is decreasing in c P C. Obviously, the first inequality in (6) holds,

i.e., for all c1 ă s˚,

g1Hpc1q

gLpc1q
ě

şErω|ωąs˚s
s˚

pc´ s˚qg1Hpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
.

To show that the second inequality in (6) holds, it is equivalent to show that for

Ψpcq
p4qp10q
“ g1Hpcq ´

şErω|ωąs˚s
s˚

pc̃´ s˚qg1Hpc̃q dc̃
şErω|ωąs˚s
s˚

pc̃´ s˚qgLpc̃q dc̃
gLpcq, @c P C, (18)

one must have
ż Erω|ωąs˚s

c2

pc´ c2qΨpcq dc ď 0, @c2 P ps
˚, 1s.

By definition of Ψ,
ż Erω|ωąs˚s

s˚
pc´ s˚qΨpcq dc “ 0.

Also, by the assumption that
g1Hpcq

gLpcq
is decreasing,

Ψpcq

gLpcq
is decreasing in c P C. This further

implies that Ψ must satisfy the DSCP. Let ĉ be one crossing point of Ψ identified similarly

as in (2). Then it must be the case that s˚ ă ĉ.

For c2 P ps
˚, ĉs,

ż Erω|ωąs˚s

c2

pc´ c2qΨpcq dc

“

ż ĉ

c2

pc´ s˚q ¨
c´ c2

c´ s˚
Ψpcq
loomoon

ě0

dc`

ż Erω|ωąs˚s

ĉ

pc´ s˚q ¨
c´ c2

c´ s˚
Ψpcq
loomoon

ď0

dc

ď

ż ĉ

c2

pc´ s˚q ¨
ĉ´ c2

ĉ´ s˚
Ψpcq dc`

ż Erω|ωąs˚s

ĉ

pc´ s˚q ¨
ĉ´ c2

ĉ´ s˚
Ψpcq dc

“
ĉ´ c2

ĉ´ s˚
¨

ż Erω|ωąs˚s

c2

pc´ s˚qΨpcq dc

ď
ĉ´ c2

ĉ´ s˚
¨

ż Erω|ωąs˚s

s˚
pc´ s˚qΨpcq dc

looooooooooooooomooooooooooooooon

“0

“0.
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For c2 P
`

ĉ,Erω|ω ą s˚s
‰

, it is obvious that
ż Erω|ωąs˚s

c2

pc´ c2q
loomoon

ě0

Ψpcq
loomoon

ď0

dc ď 0.

For c2 P
`

Erω|ω ą s˚s, 1
‰

, notice that the lower limit of the integration below is higher

than the upper limit, and thus
ż Erω|ωąs˚s

c2

pc´ c2q
loomoon

ď0

Ψpcq
loomoon

ď0

dc ď 0.

As a result, the second inequality of (6) also holds.

In sum, (6) holds, which implies that the optimal persuasion mechanism can be imple-

mented by one experiment.

Part (b).

Assume that (4) holds and
g1Hpcq

gLpcq
is strictly increasing in c P C.

If s˚ ą 0, then obviously, for all c1 ă s˚,

g1Hpc1q

gLpc1q
ă

şErω|ωąs˚s
s˚

pc´ s˚qg1Hpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc

p4q
“ ´

fpLq

fpHq

şErω|ωąs˚s
s˚

pc´ s˚qg1Lpcq dc
şErω|ωąs˚s
s˚

pc´ s˚qgLpcq dc
.

Namely, the first inequality in (5) is violated.

Now we assume that s˚ “ 0. We can see that
Ψpcq

gLpcq
, where Ψ defined in (10) and

equivalently in (18) given (4), is strictly increasing in c P C, negative when c “ 0, and

positive when c ě Erωs. Hence, there exists a unique point ĉ P p0,Erωsq such that Ψpĉq “ 0,

Ψpcq ă 0 for c ă ĉ, and Ψpcq ą 0 for c ą ĉ. it must be the case that s˚ ă ĉ ă Erω|ω ą s˚s.

For c2 P ps
˚, ĉs, we can reverse the argument above and show that

ż Erω|ωąs˚s

c2

pc´ c2qΨpcq dc ą 0.

The above inequality along with (10) implies that the second inequality in (5) is violated for

c2.

In sum, the optimal persuasion mechanism cannot be implemented by one experiment.

B Online Appendix B: Multiple types

We now consider the case where there are more than two types. Let T “ tt1, t2, ..., tKu

where K ě 3. For each k “ 1, 2, ..., K, we slightly abuse notation by letting fpkq denote the

37



probability that tk is realized, and Gkp¨q and gkp¨q be the CDF and PDF of c conditional on

tk in stage one. We now restate Assumption 1 as follows: For each k P t1, 2, ..., Ku, PDF

gkpcq and PDF gpcq are log-concave in c. Assumption 2 is restated as follows: The likelihood

ratio
gk`1pcq

gkpcq
is strictly increasing in c for each k P t1, 2, ..., K ´ 1u.

As before, Problem (O) is equivalent to the following Problem (I).

max
pUkPUqk“1,...,K

ÿ

k“1,...,K

fpkq

ż

cPC

Ukpcqg
1
kpcq dc

s.t.

ż

cPC

Ukpcqgkpcq dc ě

ż

cPC

Uk1pcqgkpcq dc, @k, k1 P t1, ..., Ku.

B.1 Sufficient condition for non-discriminatory disclosure

For each k P t1, ..., Ku, let s˚k be defined in a similar way as (3) but under PDF gk such that

Up0,s˚k q solve the following problem

max
UPU

ż

cPC

Upcqg1kpcq. (19)

Namely, Up0,s˚k q maximizes the surplus extracted from type-tk agent.

We now present a sufficient condition for Problem (I) to have a non-discriminatory solu-

tion pUk “ Up0,s˚qqkPt1,...,Ku.

Proposition 2. The optimal persuasion mechanism can be implemented by one experiment

if
g1kpcq

g1pcq
is decreasing for all k P t1, ..., Ku such that s˚k ě s˚.

Proof of Proposition 2. Fix a pair of nonempty sets κ´, κ` Ď t1, ..., Ku such that κ´ Y

κ` “ t1, ..., Ku. Consider a relaxed variant of Problem (I) where only constraints ICptk, tk1q,

i.e., tk should not have the incentive to misreport tk1 , for all k P κ´ and k1 P κ` are imposed.

If we show that pUk “ Up0,s˚qqkPt1,...,Ku solves the relaxed problem, then it is obvious that it

also solves Problem (I) because the omitted constraints are trivially satisfied. The Lagrangian

of the relaxed problem is given as follows.

L “
ÿ

k“1,...K

fpkq

ż

cPC

Ukpcqg
1
kpcq dc`

ÿ

kPκ´,k1Pκ`

λk,k1

ż

cPC

rUkpcq ´ Uk1pcqs gkpcq dc “
ÿ

k“1,...,K

Lk,
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where

Lk ”
ż

cPC

Ukpcq

«

fpkq
g1kpcq

gkpcq
`

ÿ

k1Pκ`

λk,k1

ff

gkpcq dc, @k P κ´,

Lk1 ”
ż

cPC

Uk1pcq

«

fpk1q
g1k1pcq

g1pcq
´

ÿ

kPκ´

λk,k1
gkpcq

g1pcq

ff

g1pcq dc, @k1 P κ`.

We now proceed to construct the sets κ´ and κ` and solve the relaxed problem by

discussing three cases.

Case 1. Suppose s˚ P p0, 1q.

Recall that in this case,

ÿ

kPt1,...,Ku

fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc “ 0.

Let κ´ ” t1uYtk P t2, ..., K´1u : s˚k ă s˚u and κ` ” tk P t2, ..., K´1u : s˚k ě s˚uYtKu.

Both sets are nonempty. Let K´ and K` denote the cardinality of κ´ and κ`, respectively.

Given any nonnegative profile of Lagrangian multiplier pλk,k1qkPκ´,k1Pκ` , for each k P κ´,

fpkq
g1kpcq

gkpcq
`

ÿ

k1Pκ`

λk,k1

is decreasing by Assumption 1 (stated for K ě 3), and for each k1 P κ`,

fpk1q
g1k1pcq

g1pcq
´

ÿ

kPκ´

λk,k1
gkpcq

g1pcq

is decreasing by Assumption 2 and the sufficient condition stated in Proposition 2.

As a result, these expressions above satisfy the DSCP.

We now take four steps to solve this relaxed problem.

Step 1. We introduce a few notations.
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For each positive interger k P κ´, define a K´
ˆK` matrix:

Bk
K´ˆK` “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 . . . 0
...

. . .
...

0 . . . 0
ż Erω|ωąs˚s

s˚
pc´ s˚qgkpcq dc . . .

ż Erω|ωąs˚s

s˚
pc´ s˚qgkpcq dc

0 . . . 0
...

. . .
...

0 . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ð k-th row

and a K`
ˆK` matrix:

Ck
K`ˆK` “ ´

ż Erω|ωąs˚s

s˚
pc´ s˚qgkpcq dc ¨ IK`ˆK` ,

where IK`ˆK` is the K`
ˆK` identity matrix. Then we construct a K ˆK´K` matrix:

AKˆK´K` “

»

–

B1
K´ˆK` . . . BK´

K´ˆK`

C1
K`ˆK` . . . CK´

K`ˆK`

fi

fl .

Also, define the K´K`-dimentional and K-dimentional column vectors:

λK´K`ˆ1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

λ1,1

...

λ1,K`

...

...

λk,1
...

λk,K`
...
...

λK´,1
...

λK´,K`

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and bKˆ1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´fp1q

ż Erω|ωąs˚s

s˚
pc´ s˚qg11pcq dc

...

´fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

...

´fpKq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1Kpcq dc

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Step 2. We want to establish that for all K-dimentional column vector yKˆ1 such that

pAKˆK´K`q
TyKˆ1 ě 0K´K`ˆ1, it must be true that pbKˆ1q

TyKˆ1 ě 0.

Inequality pAKˆK´K`q
TyKˆ1 ě 0K´K`ˆ1 is equivalent to

yk

ż Erω|ωąs˚s

s˚
pc´ s˚qgkpcq dc´ yk1

ż Erω|ωąs˚s

s˚
pc´ s˚qgkpcq dc ě 0,

namely, yk ě yk1 , for all k P κ´ and k1 P κ`.

Define ȳ ” max
k1Pκ`

yk1 . Hence,

pbKˆ1q
TyKˆ1

“ ´
ÿ

kPt1,...,Ku

ykfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

“ ´
ÿ

kPκ´

yk
loomoon

ěȳ

fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

looooooooooooooomooooooooooooooon

ď0

´
ÿ

kPκ`

yk
loomoon

ďȳ

fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

looooooooooooooomooooooooooooooon

ě0

ě ´
ÿ

kPκ´

ȳfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc´

ÿ

kPκ`

ȳfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

“ ´ȳ
ÿ

kPt1,...,Ku

fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

looooooooooooooomooooooooooooooon

“0

“ 0.

Step 3. Apply Farkas Lemma: either AKˆK´K`λK´K`ˆ1 “ bKˆ1 has a solution λK´K`ˆ1 ě

0K´K`ˆ1, or pAKˆK´K`q
TyKˆ1 ě 0K´K`ˆ1 has a solution yKˆ1 with pbKˆ1q

TyKˆ1 ă

0. Given Step 2, we know that there exists a nonnegative vector λK´K`ˆ1 such that

AKˆK´K`λK´K`ˆ1 “ bKˆ1. Elements in the vector λ are the Lagrangian multipliers

pλk,k1 ě 0qkPκ´,k1Pκ` .

Step 4. With the pλk,k1 ě 0qkPκ´,k1Pκ` identified in Step 3, AKˆK´K`λK´K`ˆ1 “ bKˆ1

implies

ż Erω|ωąs˚s

s˚
pc´ s˚q

«

fpkqg1kpcq `
ÿ

k1Pκ`

λk,k1gkpcq

ff

dc “ 0, @k P κ´,

ż Erω|ωąs˚s

s˚
pc´ s˚q

«

fpk1qg1k1pcq ´
ÿ

kPκ´

λk,k1gkpcq

ff

dc “ 0, @k1 P κ`.
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Given the above equations and the DSCP of the term in each square bracket established

after setting up the Lagrangian, when we evaluate any of these integral expressions at some

s ą s˚ (resp. s ă s˚) instead of s˚, the integral is nonpositive (resp. nonnegative). Hence,

among all s P C, s “ s˚ not only satisfies the first order condition but also the second order

condition, i.e., Up0,s˚q P U maximizes Lk for each k P t1, ..., Ku in the relaxed problem.

Case 2. Suppose s˚ “ 1.

We follow the construction of κ´ and κ` as in Case 1.

Recall the remark in Section 4.2, since s˚ “ 1, it must be the case that
ÿ

kPt1,...,Ku

fpkqg1kpcq ě

0, @c P C, which implies that
ÿ

kPt1,...,Ku

fpkqg1kp1q ě 0. Similarly, for each k P κ`, it must be

the case that g1kp1q ě 0. We can further show by contrapositive that for each k P t1, ..., Ku

such that s˚k ă 1, it must be the case that g1kp1q ď 0.

Step 1. We keep matrix λK´K`ˆ1 and modify matrices Bk
K´ˆK` , Ck

K`ˆK` , AKˆK´K` ,

and bKˆ1 used in Case 1 into the following:

Bk
K´ˆK` “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 . . . 0
...

. . .
...

0 . . . 0

gkp1q . . . gkp1q

0 . . . 0
...

. . .
...

0 . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ð k-th row , Ck
K`ˆK` “ ´gkp1q ¨ IK`ˆK` ,

AKˆK´K` “

»

–

B1
K´ˆK` . . . BK´

K´ˆK`

C1
K`ˆK` . . . CK´

K`ˆK`

fi

fl , bKˆ1 “

»

—

—

—

—

—

—

—

—

—

–

´fp1qg11p1q
...

´fpkqg1kp1q
...

´fpKqg1Kp1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Step 2. We want to establish that for all K-dimentional column vector yKˆ1 ě 0Kˆ1 such

that pAKˆK´K`q
TyKˆ1 ď 0K´K`ˆ1, it must be true that pbKˆ1q

TyKˆ1 ď 0.
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Inequality pAKˆK´K`q
TyKˆ1 ď 0K´K`ˆ1 is equivalent to ykgkp1q ´ yk1gkp1q ď 0. Hence,

0 ď yk ď yk1 , for all k P κ´ and k1 P κ`. Define ȳ ě 0 below:

y “

$

’

&

’

%

y1 ď min
kPκ`

yk, if κ´ “ t1u,

min
kPκ`

yk, otherwise.

If κ´ “ t1u, it is obvious that ´
ÿ

kPκ´

ykfpkqg
1
kp1q “ ´

ÿ

kPκ´

ȳfpkqg1kp1q. Otherwise, we

have s˚k ă s˚ “ 1 for all k P κ´ and ´
ÿ

kPκ´

yk
loomoon

ďȳ

fpkq g1kp1q
loomoon

ď0

ď ´
ÿ

kPκ´

ȳfpkqg1kp1q. These

observations lead to the first inequality below:

pbKˆ1q
TyKˆ1 “´

ÿ

kPt1,...,Ku

ykfpkqg
1
kp1q

“ ´
ÿ

kPκ´

ykfpkqg
1
kp1q ´

ÿ

kPκ`

yk
loomoon

ěȳ

fpkq g1kp1q
loomoon

ě0

ď´
ÿ

kPκ´

ȳfpkqg1kp1q ´
ÿ

kPκ`

ȳfpkqg1kp1q

“ ´ ȳ
loomoon

ě0

ÿ

kPt1,...,Ku

fpkqg1kp1q

loooooooooomoooooooooon

ě0

ď 0.

Step 3. Apply a variant of Farkas Lemma: either AKˆK´K`λK´K`ˆ1 ě bKˆ1 has a

solution λK´K`ˆ1 ě 0K´K`ˆ1, or pAKˆK´K`q
TyKˆ1 ď 0K´K`ˆ1 has a solution yKˆ1 ě 0Kˆ1

with pbKˆ1q
TyKˆ1 ą 0. Given Step 2, we now know that there exists a nonnegative vector

λK´K`ˆ1 such that AKˆK´K`λK´K`ˆ1 ě bKˆ1.

Step 4. By Step 3, there exists pλk,k1 ě 0qkPκ´,k1Pκ` , such that AKˆK´K`λK´K`ˆ1 ě bKˆ1,

i.e.,

fpkqg1kp1q `
ÿ

k1Pκ`

λk,k1gkp1q ě 0, @k P κ´,

fpk1qg1k1p1q ´
ÿ

kPκ´

λk,k1gkp1q ě 0, @k1 P κ`.
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Because of the DSCP established after setting up the Lagrangian, we further know that

fpkqg1kpcq `
ÿ

k1Pκ`

λk,k1gkpcq ě 0, @k P κ´, c P C,

fpk1qg1k1pcq ´
ÿ

kPκ´

λk,k1gkpcq ě 0, @k1 P κ`, c P C,

As a result, Up0,s˚“1q maximizes Lk for all k P t1, ..., Ku.

Case 3. Suppose s˚ “ 0.

In this case,
ÿ

kPt1,...,Ku

fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc ď 0.

We now modify the construction of sets κ´ and κ`: let κ´ ” t1u Y tk P t2, ...K ´ 1u :

s˚k “ 0u and κ` ” tKu Y tk P t2, ...K ´ 1u : s˚k ą 0u.

We follow Step 1 in Case 1 and only adjust Steps 2 to 4.

Step 2. We want to establish that for all K-dimentional column vector yKˆ1 ě 0Kˆ1 such

that pAKˆK´K`q
TyKˆ1 ě 0K´K`ˆ1, it must be true that pbKˆ1q

TyKˆ1 ě 0.

Fix any K-dimentional column vector yKˆ1 ě 0Kˆ1 such that pAKˆK´K`q
TyKˆ1 ě

0K´K`ˆ1. Inequality pAKˆK´K`q
TyKˆ1 ě 0K´K`ˆ1 is equivalent to

yk

ż Erω|ωąs˚s

s˚
pc´ s˚qgkpcq dc´ yk1

ż Erω|ωąs˚s

s˚
pc´ s˚qgkpcq dc ě 0,

namely, yk ě yk1 , for all k P κ´ and k1 P κ`.

Define ȳ ě 0 below:

y “

$

’

&

’

%

yK ď min
kPκ´

yk, if κ` “ tKu,

min
kPκ´

yk, otherwise.

If κ` “ tKu, it is obvious that

´
ÿ

kPκ`

ykfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc “ ´

ÿ

kPκ`

ȳfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc.

Otherwise, s˚k ą s˚ “ 0 for all k P κ`, which further implies that

´
ÿ

kPκ`

yk
loomoon

ďȳ

fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

looooooooooooooomooooooooooooooon

ě0

ě ´
ÿ

kPκ`

ȳfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc.
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These observations lead to the first inequality below:

pbKˆ1q
TyKˆ1

“ ´
ÿ

kPκ´

yk
loomoon

ěȳ

fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

looooooooooooooomooooooooooooooon

ď0

´
ÿ

kPκ`

ykfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

ě ´
ÿ

kPκ´

ȳfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc´

ÿ

kPκ`

ȳfpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

“ ´ ȳ
loomoon

ě0

ÿ

kPt1,...,Ku

fpkq

ż Erω|ωąs˚s

s˚
pc´ s˚qg1kpcq dc

loooooooooooooooooooooooomoooooooooooooooooooooooon

ď0

ě 0.

Step 3. Apply a variant of Farkas Lemma: either AKˆK´K`λK´K`ˆ1 ď bKˆ1 has a

solution λK´K`ˆ1 ě 0K´K`ˆ1, or pAKˆK´K`q
TyKˆ1 ě 0K´K`ˆ1 has a solution yKˆ1 ě 0Kˆ1

with pbKˆ1q
TyKˆ1 ă 0. Given Step 2, we now know that there exists a nonnegative vector

λK´K`ˆ1 such that AKˆK´K`λK´K`ˆ1 ď bKˆ1.

Step 4. With the pλk,k1 ě 0qkPκ´,k1Pκ` identified in Step 3, AKˆK´K`λK´K`ˆ1 ď bKˆ1

implies

ż Erω|ωąs˚s

s˚
pc´ s˚q

«

fpkqg1kpcq `
ÿ

k1Pκ`

λk,k1gkpcq

ff

dc ď 0, @k P κ´,

ż Erω|ωąs˚s

s˚
pc´ s˚q

«

fpk1qg1k1pcq ´
ÿ

kPκ´

λk,k1gkpcq

ff

dc ď 0, @k1 P κ`.

The above inequalities and the DSCP of each term in the square bracket imply that Up0,s˚“0q P

U maximizes Lk for each k P t1, ..., Ku in the relaxed problem.

B.2 Sufficient condition for discriminatory disclosure

The following proposition provides a sufficient condition for non-discriminatory disclosure.

The negation of this condition serves as a sufficient condition for discriminatory disclosure.

Proposition 3. For each k P t2, ..., Ku, let

ḡkpcq ”
fpkqgkpcq ` ...` fpKqgKpcq

fpkq ` ...` fpKq
.
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The optimal persuasion mechanism can be implemented by an experiment only if for each

k P t2, ..., Ku, c1 ă s˚, and c2 ą s˚,

ḡ1kpc1q

gk´1pc1q
ě ´

fp1q
şErω|ωąs˚s
s˚

pc´ s˚qg11pcq dc` ...` fpk ´ 1q
şErω|ωąs˚s
s˚

pc´ s˚qg1k´1pcq dc

pfpkq ` ...` fpKqq
şErω|ωąs˚s
s˚

pc´ s˚qgk´1pcq dc

ě

şErω|ωąs˚s
c2

pc´ c2qḡ
1
kpcq dc

şErω|ωąs˚s
c2

pc´ c2qgk´1pcq dc
. (20)

Proof of Proposition 3. Supposes there exists k P t2, ..., Ku, c1 ă s˚, or c2 ą s˚ such

that (20) is violated. One follow the proof of Proposition 1 and design a menu of experiments

such that t1 to tk´1 receive the new experiment designed for the L type therein and tk to

tK receive the new experiment designed for the H type such that type k ´ 1 is indifferent

between the two new experiments.

By Assumption 2 (stated for K ě 3), Lemma 4, and the indifference condition for type

k ´ 1, every type k1 with k1 ‰ k will weakly prefer the experiment designed for him. As a

result, IC1 holds for the newly constructed menu.

By following the argument of the two-type case, one can easily show that the above menu

strictly benefits the principal.
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