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The paper examines information structures that can guarantee full surplus extraction via 
collusion-proof mechanisms. Our collusion-proofness notion requires that there does not exist any 
coalition whose manipulation can affect the mechanism designer’s payoff. When the mechanism 
designer is restricted to using standard Bayesian mechanisms, we show that under almost every 
prior distribution of agents’ types, there exist payoff structures under which there is no collusion-

proof full surplus extracting mechanism. However, when ambiguous mechanisms are allowed, 
we provide a weak necessary and sufficient condition on the prior such that collusion-proof full 
surplus extraction can be guaranteed. Thus, the paper sheds light on how the collusion-proofness 
requirement resolves the full surplus extraction paradox of Crémer and McLean (1985, 1988) and 
how engineering ambiguity in mechanism rules restores the paradox.

1. Introduction

In mechanism design theory, most works assume that agents (he) behave noncooperatively when revealing their private infor-

mation to the mechanism designer (MD, she). However, there are many real-life mechanisms, such as auctions and voting, where 
collusion arises as a common practice, and the MD has limited power in banning it or detecting its makeup.2 When a group of agents 
sees room to profit from collusion, imposing individual incentive constraints on the mechanism alone may not ensure the MD’s 
desired outcome. In response, we wish to design mechanisms that are immune from all coalitions’ joint manipulations.

This paper explores what information structures can guarantee full surplus extraction (FSE) via collusion-proof mechanisms. 
FSE mechanisms, giving the MD the first-best total surplus and leaving agents zero rent, are rarely seen in practice. Crémer and 
McLean (1985, 1988) have characterized information structures that guarantee FSE: such information structures necessarily involve 
correlated private information (types), yet exist broadly in any finite-dimensional type space. As a result, the theoretically permissive 
result on FSE is often interpreted as a paradox. In Crémer and McLean (1985, 1988)’s FSE mechanisms, each agent’s monetary 
transfer is highly sensitive to other agents’ types reported to the MD, which makes it natural for agents to contemplate colluding. 
Hence, it is of interest to study the extent to which the collusion-proofness requirement restricts the information structures that 
guarantee FSE and serves as a resolution of the paradox.
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Our collusion-proofness notion is related to the ones proposed by Laffont and Martimort (2000) and Che and Kim (2006). Similar 
to these papers, we assume that members of a coalition face information asymmetry and can only collude via an incentive compatible 
and individually rational side contract. We consider a general model with at least two players and assume that all coalitions can be 
formed, as in notions of the strong Nash equilibrium and the core. This differentiates our model from the two-agent two-type case 
studied by Laffont and Martimort (2000), and contrasts with the scenario where the MD knows a specific coalition that she should be 
concerned about as in Che and Kim (2006). Specifically, our robust collusion-proofness (RCP) condition mandates that the collusion 
of any coalition, if occurs, should not harm the MD, which is the same as the one of Che and Kim (2006), except that we require the 
mechanism to be immune from manipulations of all coalitions.

Although FSE can be guaranteed under a broad set of information structures, we find that achieving it via collusion-proof standard 
Bayesian mechanisms is challenging. In particular, Proposition 1 shows that under some mild dimensional restrictions on agents’ 
type space, for almost all prior distributions over it, there exist payoff structures under which it is impossible to achieve FSE via a 
mechanism satisfying the RCP condition. The findings contrast with the result in Che and Kim (2006): in a model with at least three 
agents where the grand coalition can collude, they show that there is a broad class of information structures for which collusion-

proof FSE can be guaranteed. Thus, the peril that more coalitions may be formed significantly reduces information structures that 
guarantee FSE and offers a resolution of the FSE paradox.

As it is difficult to guarantee collusion-proof FSE by adopting standard Bayesian mechanisms, the MD might be motivated to 
use a broader collection of tools called ambiguous mechanisms (e.g., Bose and Renou, 2014; Di Tillio et al., 2017; Guo, 2019). An 
ambiguous mechanism has vaguely described rules: the MD can secretly commit to a standard Bayesian mechanism, but strategically 
announce multiple potential mechanisms. In reality, the vague tax audit scheme can be viewed as an ambiguous mechanism. We 
assume that agents are ambiguity-averse towards the unknown mechanism rule and make decisions with the maxmin expected utility 
of Gilboa and Schmeidler (1989).

We show that collusion-proof FSE via ambiguous mechanisms can be guaranteed, if agents’ prior distribution satisfies the Coalition 
Beliefs Determine Preferences (CBDP) property. This is true under the collusion-proofness notion of RCP generalized to ambiguous 
mechanisms. Moreover, we slightly strengthen the RCP condition into the RCP* condition, where the latter allows members of a 
coalition to utilize a side contract that is also contingent on information revealed from the main mechanism. Then collusion-proof 
FSE in the sense of RCP* can be guaranteed via ambiguous mechanisms, if and only if the prior satisfies the CBDP property. The 
CBDP property strengthens the Beliefs Determine Preferences (BDP) property of Neeman (2004) by also requiring the knowledge of 
any non-grand coalition’s posterior belief over types of agents out of the coalition to pin down this coalition’s type profile. In any 
fixed finite type space, the CBDP property imposes a weak restriction on the prior over the type space. Thus, there is a broad class 
of prior distributions under which collusion-proof FSE can be achieved via ambiguous mechanisms. In particular, ambiguity can be 
engineered to soften the unpermissive result on collusion-proof FSE in the two-agent environment of Laffont and Martimort (2000), 
and to address the peril that all coalitions can be formed in the multiple-agent model of Che and Kim (2006). Therefore, the use of 
ambiguous mechanisms can restore the FSE paradox.

Literature Review. The paper is related to three strands of the literature.

First, the paper is related to the literature on mechanism design under correlated beliefs.

Among others, Crémer and McLean (1985, 1988), McAfee and Reny (1992), and Lopomo et al. (2022) have characterized condi-

tions on the information structures so that FSE can be guaranteed. In particular, in a finite type space, Crémer and McLean (1988)

have shown that Convex Independence is the necessary and sufficient condition on the prior to guarantee FSE. A related question is 
what information structures with correlated beliefs can guarantee the implementability of all efficient allocations, with or without 
additional individual rationality and/or budget balance restrictions on the mechanism. The proper scoring rule (see Börgers et al., 
2015, for a reference) and the work of d’Aspremont et al. (1990, 2004), McLean and Postlewaite (2004, 2015), and Kosenok and 
Severinov (2008), among others, have provided answers to these questions. The methodology adopted in the current paper is related 
to Crémer and McLean (1988) and Kosenok and Severinov (2008): we also focus on a finite type space and establish the existence 
of a desirable mechanism via the duality approach. A key difference is that we design the mechanism in a way that is immune from 
collusion.

The current paper is directly related to the literature on collusion-proof mechanisms.

One approach in the literature considers all possible coalitions’ deviations and imposes the collusion-proofness requirement on 
the mechanism axiomatically without explicitly modeling strategic interactions due to information asymmetry within a coalition. 
Green and Laffont (1979), Chen and Micali (2012), Bierbrauer and Hellwig (2016), and Safronov (2018), among others, adopt this 
approach. This approach provides a benchmark to study collusion-proof mechanisms since the worst-case scenario from the MD’s 
perspective is often that all coalitions may be formed and that agents collude without encountering information frictions. In this 
strand of the literature, Green and Laffont (1979), Chen and Micali (2012), and Bierbrauer and Hellwig (2016) focus on ex-post 
collusion-proofness notions, and Safronov (2018) adopts an interim notion. In particular, Safronov (2018) shows that in private-

value environments with independent beliefs, every efficient allocation rule is implementable via an incentive compatible, budget 
balanced, and collusion-proof mechanism. We visit the collusion-proofness notion of Safronov (2018) in the Online Appendix as a 
supplement of the RCP condition considered in the paper. The message that it is difficult to guarantee collusion-proof FSE under 
standard Bayesian mechanisms, but easy under ambiguous mechanisms, remains true.

Another approach to studying collusion-proof mechanisms focuses on one particular coalition that can be formed and explicitly 
considers within-coalition information asymmetry, which may undermine the coalition’s ability to collude. Laffont and Martimort 
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(1997, 2000), Che and Kim (2006), and Meng et al. (2017) follow this approach. Laffont and Martimort (1997, 2000) and Meng et 
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al. (2017) characterize the optimal collusion-proof mechanisms in their specific payoff structures with two agents and two types. 
One observation from them is that the collusion-proofness requirement does not have an additional bite into the MD’s ability to 
extract agents’ surplus in the independent belief case, but can have an additional bite if agents have correlated beliefs. Che and Kim 
(2006) investigate environments with more agents and general payoff structures. They extend the positive result on collusion-proof 
mechanism design under independent beliefs and also identify a sufficient condition on the information structure that guarantees 
collusion-proof FSE. Our RCP and RCP* conditions are built on the collusion-proofness notion of Che and Kim (2006): we strengthen 
their notion by requiring a mechanism to be immune from all coalitions’ manipulations. Our work contributes to this approach by 
revealing the importance of the MD’s knowledge of the composition of the colluding coalition in the FSE problem: when all coalitions 
can be formed, it may be impossible to design a standard Bayesian mechanism that achieves FSE and satisfies the RCP condition.

The paper also fits into the literature on mechanism design with ambiguity-averse agents.

Some works in this literature, including the current one, explore if it is possible to strategically engineer ambiguity in the 
mechanism to improve its performance. One approach involves endogenously generating ambiguity in agents’ beliefs towards other 
agents’ types: Bose and Renou (2014) do so via an ambiguous communication device and the endogenously engineered ambiguous 
beliefs may allow the MD to implement social choice functions that are not implementable otherwise. A second approach generates 
ambiguity on the payoff rule more directly. For example, Di Tillio et al. (2017), Bose and Daripa (2017), Guo (2019), and Tang 
and Zhang (2021) demonstrate that ambiguous mechanisms are more potent than standard Bayesian mechanisms in screening, 
preferences elicitation, FSE, and implementing social choice correspondences. To the best of our knowledge, the current paper is the 
first one that studies how ambiguous mechanisms can be introduced to address collusion.

In some other works, agents are assumed to hold ambiguous beliefs about other agents’ types exogenously, and the MD designs the 
optimal/efficient standard Bayesian mechanisms, e.g., Bose et al. (2006), Bose and Daripa (2009), Renou (2015), Wolitzky (2016), 
De Castro and Yannelis (2018), Song (2018, 2023), Kocherlakota and Song (2019), and Lopomo et al. (2020). The current work 
differs from these papers, as we do not assume ambiguous beliefs about other agents’ types.

The rest of the paper proceeds as follows. Section 2 sets up the model. Section 3 provides a motivating example. Section 4

defines the collusion-proofness notion and provides a theoretically unpermissive results on collusion-proof FSE via standard Bayesian 
mechanism. Section 5 presents a possibility result by adopting ambiguous mechanisms. Section 6 concludes. All proofs are relegated 
to the Appendix.

2. Set-up

We study an environment with one mechanism designer (MD, she) and a finite set of agents (he) 𝐼 = {1, 2, ..., 𝑛 ⩾ 2}. Each 𝑖 ∈ 𝐼
privately observes his type 𝜃𝑖 ∈Θ𝑖, where Θ𝑖 is 𝑖’s type set satisfying 2 ⩽ |Θ𝑖| < +∞ and Θ ≡

∏
𝑖∈𝐼 Θ𝑖 is the finite type space. Assume 

that there is a full-support common prior over Θ, i.e., a 𝑝 ∈ Δ(Θ) such that 𝑝(𝜃) > 0 for each 𝜃 ∈ Θ. The pair (Θ, 𝑝) is called an

information structure.

For any 𝑆 ∈ 2𝐼∖{∅}, 𝑆 is an agent if |𝑆| = 1, a coalition if 2 ⩽ |𝑆| ⩽ 𝑛, and the grand coalition if |𝑆| = 𝑛. For 𝑆 with 1 ⩽ |𝑆| < 𝑛, 
given type profile 𝜃𝑆 ≡ (𝜃𝑖)𝑖∈𝑆 ∈ Θ𝑆 ≡

∏
𝑖∈𝑆 Θ𝑖, we let 𝑝(⋅|𝜃𝑆 ) ≡ (𝑝(𝜃−𝑆 |𝜃𝑆 ))𝜃−𝑆∈Θ−𝑆

denote the posterior belief over types of agents 
out of 𝑆 , where 𝑝(𝜃−𝑆 |𝜃𝑆 ) ≡ 𝑝(𝜃𝑆 ,𝜃−𝑆 )

𝑝(𝜃𝑆 )
, 𝑝(𝜃𝑆 ) ≡

∑
𝜃′−𝑆∈Θ−𝑆

𝑝(𝜃𝑆 , 𝜃′−𝑆 ), and 𝜃−𝑆 ≡ (𝜃𝑗 )𝑗∈𝐼∖𝑆 . Agents are said to have independent 
beliefs, if for all 𝑖 ∈ 𝐼 , 𝑝(⋅|𝜃𝑖) is constant across different 𝜃𝑖 ∈ Θ𝑖; otherwise, agents have correlated beliefs. For simplicity, denote 𝜃𝐼
by 𝜃.

The MD’s quasi-linear utility function is of the form 𝑢0(𝑎) −
∑
𝑖∈𝐼 𝑡𝑖 and each agent’s quasi-linear utility function is of the form 

𝑢𝑖(𝑎, 𝜃) + 𝑡𝑖. We let 𝑎 denote a feasible outcome and 𝐴 be a compact set of feasible outcomes that contains all lotteries over feasible 
pure outcomes. Let 𝑢0(𝑎) and 𝑢𝑖(𝑎, 𝜃) be the MD’s and agent 𝑖’s payoff from outcome 𝑎, respectively, and 𝑡𝑖 ∈ ℝ be the monetary 
transfer from the MD to agent 𝑖.3 We call the profile of utility functions (𝑢0, (𝑢𝑖)𝑖∈𝐼 ) a payoff structure.

For example, in the single-unit auction case, we may have 𝐴 = Δ{0, 1, ..., 𝑛}, where these pure outcomes mean that the good is 
not produced, allocated to agent 1, ..., and allocated to agent 𝑛, respectively. View −𝑢0(𝑎) as the MD’s cost of producing outcome 
𝑎. For each 𝑖 ∈ 𝐼 , 𝑢𝑖(𝑎, 𝜃) may depend on all agents’ private information (e.g., as in a common value auction), or in the degenerate 
private-value case, depend on 𝜃𝑖 only (e.g., in a private-value auction).

Let (𝑞, 𝑡) denote a (direct) standard Bayesian mechanism, where 𝑞 ∶ Θ →𝐴 is the allocation rule that assigns the outcome and 
𝑡 ∶ Θ →ℝ𝑛 is the transfer rule that describes the monetary payment received by agents. We may simply call (𝑞, 𝑡) a mechanism.

Given agent 𝑖’s reporting strategy 𝜎𝑖 ∶ Θ𝑖 → Δ(Θ𝑖), 𝜎𝑖[𝜃𝑖](𝜃′𝑖 ) is the probability that type-𝜃𝑖 agent reports 𝜃′
𝑖
. Let 𝜎̄𝑖 denote the 

truthful reporting strategy, i.e., the one such that 𝜎̄𝑖[𝜃𝑖](𝜃𝑖) = 1 for all 𝜃𝑖 ∈ Θ𝑖. If type-𝜃𝑖 agent 𝑖 follows strategy 𝜎𝑖 and other agents 
truthfully report, his utility is

𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎𝑖) ≡
∑
𝜃′
𝑖
∈Θ𝑖

∑
𝜃−𝑖∈Θ−𝑖

[𝑢𝑖
(
𝑞(𝜃′

𝑖
, 𝜃−𝑖), (𝜃𝑖, 𝜃−𝑖)

)
+ 𝑡𝑖(𝜃′𝑖 , 𝜃−𝑖)]𝑝(𝜃−𝑖|𝜃𝑖)𝜎𝑖[𝜃𝑖](𝜃′𝑖 ).

When 𝜎𝑖[𝜃𝑖](𝜃′𝑖 ) = 1, we may let 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜃′𝑖 ) denote 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎𝑖) for simplicity.

3 We assume that 𝑢0(⋅) and 𝑢𝑖(⋅, 𝜃) defined over lotteries are consistent with the expected utility theory. We also remark that the analysis of the paper does not 
change if we generalize 𝑢0 so that it depends on both 𝑎 and 𝜃. However, we focus on the current setup, which is the same as that of Che and Kim (2006), to highlight 
265

our observation that their possibility result on collusion-proof FSE is overturned when all coalitions can be formed.
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Table 1

Common prior 𝑝.
𝑝 𝜃𝐻2 𝜃𝐿2

𝜃𝐻1 0.3 0.2
𝜃𝐿1 0.2 0.3

We also introduce a parallel notation for coalition 𝑆 for later convenience. For any coalition 𝑆 , we let 𝛿𝑆 ∶ Θ𝑆 →Δ(Θ𝑆 ) denote 
the joint reporting strategy of members in coalition 𝑆 , under which 𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ) is the probability that members with type profile 
𝜃𝑆 jointly report 𝜃′

𝑆
. For each coalition 𝑆 , joint reporting strategy 𝛿𝑆 , and agent 𝑖 ∈ 𝑆 , we define

𝑉𝑖[𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 ) ≡
∑

𝜃′
𝑆
∈Θ𝑆

∑
𝜃−𝑆∈Θ−𝑆

[𝑢𝑖
(
𝑞(𝜃′

𝑆
, 𝜃−𝑆 ), (𝜃𝑆 , 𝜃−𝑆 )

)
+ 𝑡𝑖(𝜃′𝑆 , 𝜃−𝑆 )]𝑝(𝜃−𝑆 |𝜃𝑆 )𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 )

and

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 ) ≡
∑
𝑖∈𝑆

𝑉𝑖[𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 ),

which are, respectively, the utility of agent 𝑖 and the total utility of members in coalition 𝑆 when 𝑆 has type profile 𝜃𝑆 and follows 
joint reporting strategy 𝛿𝑆 . Also, let 𝑉𝑖[𝑞, 𝑡](𝜃𝑆 , 𝜃′𝑆 ) and 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝜃′𝑆 ) denote the above two terms when 𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ) = 1. We say 𝛿𝑆

is deterministic if for each 𝜃𝑆 ∈ Θ𝑆 , there exists 𝜃′
𝑆

such that 𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ) = 1. When |𝑆| = 1, i.e., 𝑆 consists of an agent, we abuse 
notation and view 𝛿𝑆 as this agent’s reporting strategy.

The mechanism (𝑞, 𝑡) is said to be feasible if it satisfies the interim individual rationality (IR) condition and the interim incentive 
compatibility (IC) condition below:

IR 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎̄𝑖) ⩾ 0,∀𝑖 ∈ 𝐼, 𝜃𝑖 ∈Θ𝑖,

IC 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎̄𝑖) ⩾ 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎𝑖),∀𝑖 ∈ 𝐼, 𝜃𝑖 ∈Θ𝑖, 𝜎𝑖 ∶ Θ𝑖 →Δ(Θ𝑖).

An allocation rule 𝑞 is said to be efficient, if it maximizes the ex-ante total surplus, i.e.,∑
𝜃∈Θ

[𝑢0
(
𝑞(𝜃)

)
+
∑
𝑖∈𝐼

𝑢𝑖
(
𝑞(𝜃), 𝜃

)
]𝑝(𝜃) = max

𝑞∶Θ→𝐴

∑
𝜃∈Θ

[𝑢0
(
𝑞(𝜃)

)
+
∑
𝑖∈𝐼

𝑢𝑖
(
𝑞(𝜃), 𝜃

)
]𝑝(𝜃) ≡ 𝐹𝑆,

where 𝐹𝑆 stands for the full surplus, or equivalently, if 𝑞 maximizes the ex-post total surplus pointwise, i.e., 𝑢0
(
𝑞(𝜃)

)
+∑

𝑖∈𝐼 𝑢𝑖
(
𝑞(𝜃), 𝜃

)
⩾ 𝑢0(𝑎) +

∑
𝑖∈𝐼 𝑢𝑖

(
𝑎, 𝜃

)
for all 𝑎 ∈𝐴 and 𝜃 ∈Θ.

Given a payoff structure (𝑢0, (𝑢𝑖)𝑖∈𝐼 ), we say (𝑞, 𝑡) achieves full surplus extraction (FSE), if (𝑞, 𝑡) is feasible and makes the MD’s 
ex-ante payoff equal to the 𝐹𝑆 , i.e.,∑

𝜃∈Θ
[𝑢0

(
𝑞(𝜃)

)
−
∑
𝑖∈𝐼

𝑡𝑖(𝜃)]𝑝(𝜃) = 𝐹𝑆.

FSE requires that 𝑞 must be efficient and agents’ IR constraints must bind. We say an information structure (Θ, 𝑝) guarantees FSE if 
for any payoff structure (𝑢0, (𝑢𝑖)𝑖∈𝐼 ), there exists a mechanism (𝑞, 𝑡) that achieves FSE. Crémer and McLean (1988) have shown that 
an information structure (Θ, 𝑝) guarantees FSE, if and only if the prior 𝑝 satisfies the Convex Independence condition (Definition 2

in Appendix A.1), which necessitates correlated beliefs. For almost all priors 𝑝 over a finite type space Θ, Convex Independence is 
satisfied.

3. Revisiting Laffont and Martimort (2000)’s example

In this section, we revisit a two-agent public good example of Laffont and Martimort (2000). In this example, there exists a 
standard Bayesian mechanism under which the MD extracts the full surplus from agents, but we reiterate the concern that the 
mechanism is susceptible to collusion. Then, we engineer ambiguity in the mechanism, and assume that agents are ambiguity averse 
with respect to the engineered ambiguity. With such a preference, the MD can use an ambiguous mechanism to extract the full 
surplus in a way immune from collusion.

Suppose the MD can provide 𝑞 units of public good at the cost of 0.5𝑞2.4 There are two agents 𝐼 = {1, 2}. Each agent 𝑖 has a utility 
𝜃𝑖𝑞 from 𝑞 units of public good, where 𝜃𝑖 ∈ Θ𝑖 ≡ {𝜃𝐻

𝑖
= 1, 𝜃𝐿

𝑖
= 0}. The ex-post total surplus of producing 𝑞 units of public good is 

(𝜃1 + 𝜃2)𝑞 − 0.5𝑞2, which implies that the efficient allocation rule 𝑞 ∶ Θ →ℝ+ satisfies 𝑞(𝜃) = 𝜃1 + 𝜃2 for all 𝜃 ∈Θ. With the common 
prior over Θ in Table 1, the ex-ante total surplus is 0.8.
266
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Table 2

A transfer rule 𝑡.
(𝑡1, 𝑡2) 𝜃𝐻2 𝜃𝐿2

𝜃𝐻1 (0,0) (−4,−6)
𝜃𝐿1 (−6,−4) (4,4)

Table 3

The 𝜂 and 𝜙 parts of transfer rules ̂𝑡 and ̂̂𝑡.
(𝜂1, 𝜂2) 𝜃𝐻2 𝜃𝐿2

𝜃𝐻1 (−1.4,−1.4) (−1.9,0.6)
𝜃𝐿1 (0.6,−1.9) (−0.4,−0.4)

(𝜙1, 𝜙2) 𝜃𝐻2 𝜃𝐿2

𝜃𝐻1 (2,−2) (−3,3)
𝜃𝐿1 (−3,3) (2,−2)

(a) 𝜂 (b) 𝜙

Notice that the information structure (Θ, 𝑝) satisfies the Convex Independence condition of Crémer and McLean (1988) (reviewed 
in Section A.1). Therefore, there exists a standard Bayesian mechanism that achieves FSE, e.g., the mechanism (𝑞, 𝑡), where 𝑡 is given 
by Table 2. We omit the process of verifying that (𝑞, 𝑡) achieves FSE.

This mechanism is susceptible to group manipulation. When two agents have type profiles (𝜃𝐻1 , 𝜃
𝐻
2 ), (𝜃𝐻1 , 𝜃

𝐿
2 ), (𝜃

𝐿
1 , 𝜃

𝐻
2 ), and 

(𝜃𝐿1 , 𝜃
𝐿
2 ), their ex-post payoff profiles are (2, 2), (−3, −6), (−6, −3), and (4, 4), and the MD’s ex-post payoffs are −2, 9.5, 9.5, and −8. 

Suppose the two agents collude by always reporting the type profile (𝜃𝐿1 , 𝜃
𝐿
2 ) to the MD instead — they have the incentive to do so as 

each of them will earn a constant ex-post payoff of 4 instead. However, the MD can no longer achieves FSE if this collusion occurs.

Of course, there are other standard Bayesian mechanisms that achieves FSE. Are all of them susceptible to group manipulation? 
Laffont and Martimort (2000) formalize a rather weak collusion-proofness notion. They show that in the current setting, there is no 
standard Bayesian mechanism that simultaneously achieves FSE and satisfies their collusion-proofness requirement.5

We define two transfer rules 𝜂 and 𝜙 in Table 3 and use them to construct transfer rules 𝑡= 𝜂 + 𝜆𝜙 and ̂̂𝑡 = 𝜂 − 𝜆𝜙, where 𝜆 ⩾ 0.8
is a constant multiplier. Notice that the 𝜂 part enters transfer rules 𝑡 and ̂̂𝑡 in the same way, but the 𝜙 part is multiplied by 𝜆 or −𝜆. 
Also, the 𝜙 part is ex-post budget balanced, i.e., 

∑
𝑖∈𝐼 𝜙𝑖(𝜃) = 0 for all 𝜃 ∈Θ, and thus does not affect the MD’s ex-post payoff.

Now, we allow the MD to engineer ambiguity by announcing that she has committed to one standard Bayesian mechanism in 
{(𝑞, ̂𝑡), (𝑞, ̂̂𝑡)} without further details on which one is chosen. With respect to the ambiguity engineered by the MD, we add a twist 
to the agents’ preferences by assuming that they are ambiguity averse, and moreover, follow the maxmin expected utility. Now we 
show that under the ambiguity aversion assumption, the ambiguous mechanism can lead to collusion-proof FSE.

It is important to notice that from each potential transfer rule 𝑡 ∈ {𝑡, ̂̂𝑡}, the MD’s ex-post payoff, −0.5𝑞(𝜃)2 −
∑
𝑖∈𝐼 𝑡𝑖(𝜃), is constant 

across 𝜃 ∈ Θ and equal to 0.8. Hence, even if agents manage to jointly misreport via certain collusive mechanism, as the MD’s ex-

post payoff is constant and equal to the full surplus, collusion cannot dissolve FSE. Hence, it is trivial to verify that this ambiguous 
mechanism cannot be hurt by collusion. Unfortunately, 𝜂, which is the key element contributing to the constant ex-post payoff, does 
not satisfy the IC constraints by itself, which is why we augment it with 𝜆𝜙 and −𝜆𝜙.

To verify the feasibility of the ambiguous mechanism, i.e., its IC and IR constraints, we only demonstrate the verification process 
for type 𝜃𝐻1 here. For this agent, truthful revelation leads to an interim payoff

min{0.6(2 − 1.4 + 2𝜆) + 0.4(1 − 1.9 − 3𝜆),0.6(2 − 1.4 − 2𝜆) + 0.4(1 − 1.9 + 3𝜆)} = min{0,0} = 0,

which means that the IR constraint of 𝜃𝐻1 binds. Suppose instead that this agent misreports 𝜃𝐿1 with probability 𝛾 ∈ (0, 1]. His maxmin 
expected utility becomes weakly lower:

min{𝛾[0.6(1 + 0.6 − 3𝜆) + 0.4(0 − 0.4 + 2𝜆)], 𝛾[0.6(1 + 0.6 + 3𝜆) + 0.4(0 − 0.4 − 2𝜆)]}

=min{𝛾(0.8 − 𝜆), 𝛾(0.8 + 𝜆)} ⩽ 0,

where the last inequality follows from the fact that 𝜆 ⩾ 0.8. As a result, the IC constraint of 𝜃𝐻1 is satisfied.

The construction is such that the interim payoff for a type to truthfully report is independent of the transfer rule 𝑡 ∈ {𝑡, ̂̂𝑡}, but that 
for a type to misreport depends on the transfer rule. For types 𝜃𝐻1 and 𝜃𝐿1 , the worst-case interim payoff of misreporting is attained 
by 𝑡, but for types 𝜃𝐻2 and 𝜃𝐿2 , the worst-case interim payoff of misreporting is attained by ̂̂𝑡. The engineered ambiguity reduces the 
incentive of all types to misreport.

In later sections with more agents, we follow the spirit of the example to achieve collusion-proof FSE. To prevent the grand 
coalition from manipulation, we make the MD’s ex-post payoff constant. To prevent individuals from misreporting, we exploit 
ambiguity engineered in mechanism rules as well as the assumption of ambiguity aversion. With more agents, there are non-grand 

5 Our prior corresponds to the “weak correlation case” in Laffont and Martimort (2000), where it is shown that there does not exist any mechanism to fulfill 
collusion-proof FSE. Their argument considers both symmetric mechanisms and asymmetric ones (in their appendix). We refer readers to their Proposition 5 for the 
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coalitions which are not present in the current example. As will be seen, these non-grand coalitions’ truth-telling incentives are 
guaranteed by ambiguity in mechanism rules, but the argument involves additional complication.

We now discuss the important role played by the ambiguity aversion assumption in this example. If agents assign probability 𝜌 and 
1 − 𝜌 to the events that 𝑡 and ̂̂𝑡 are chosen, then the set of all possible beliefs on the set of transfer rules is {(𝜌, 1 − 𝜌) ∶ 𝜌 ∈ [0, 1]}. The 
above extreme format of maxmin expected utility corresponds to this case. However, this extreme format of maxmin expected utility 
is not necessary to achieve collusion-proof FSE. For instance, we can follow Bose and Daripa (2009) in assuming that the MD knows 
that agents’ belief on the true transfer rule deviates from the uniform distribution by only an 𝜖 ∈ (0, 1] amount (with 𝜖 = 1 being the 
extreme format and 𝜖→ 0 being a no ambiguity case). Then the set of multiple beliefs is {(1 − 𝜖)(0.5, 0.5) + 𝜖(𝜌, 1 − 𝜌) ∶ 𝜌 ∈ [0, 1]}. 
Given this multiple-belief set, the maxmin expected utility of 𝜃𝐻1 to deviate with probability 𝛾 ∈ (0, 1] is

min
𝜌∈[0,1]

((1 − 𝜖)0.5 + 𝜖𝜌)𝛾(0.8 − 𝜆) + ((1 − 𝜖)0.5 + 𝜖(1 − 𝜌))𝛾(0.8 + 𝜆)

= min
𝜌∈[0,1]

0.8𝛾 + 𝛾𝜆𝜖(1 − 2𝜌) = 𝛾(0.8 − 𝜆𝜖).

This value can be made nonpositive if the MD chooses a large multiplier 𝜆 ⩾ 0.8∕𝜖 instead. In this case, we can restore collusion-proof 
FSE. Crucially, the lower bound of 𝜆 is not well-defined when 𝜖 = 0, i.e., when agents are ambiguity neutral. If agents are ambiguity 
neutral, i.e., assign subjective belief to potential transfers, then the ambiguous mechanism essentially reduces to a standard Bayesian 
mechanism which is a convex combination of 𝑡 and ̂̂𝑡. As is argued earlier, standard Bayesian mechanisms cannot achieve collusion-

proof FSE. Hence, a positive amount of ambiguity aversion is necessary for our new approach to work.6

4. Standard Bayesian mechanisms

4.1. Definitions

In the motivating example in Section 3, there is a simple way for agents to collude. However, the collusion process can be 
more complicated. We follow the literature that adopts the mechanism design approach to model information transmission within a 
coalition, e.g., Laffont and Martimort (2000) and Che and Kim (2006). As we mentioned in Section 1, there is another strand of the 
literature that imposes the collusion-proofness requirement on the mechanism without explicitly modeling strategic interactions due 
to information asymmetry within the coalition. In the Online Appendix, we study such an alternative collusion-proofness notion and 
its implications on FSE.

Now we review the collusion-proofness notion introduced by Che and Kim (2006) (Section 8 therein) and then impose it on FSE 
mechanisms. We consider the situation where any subset of agents, rather than merely the grand coalition, can collude.

In particular, agents in a coalition 𝑆 can collude by jointly manipulating their reports to the MD, reallocating the outcome 
specified by the mechanism (𝑞, 𝑡) (e.g., reallocating the object assigned by an auction within the winning coalition), and making 
further side transfers among themselves. The timing of the mechanism and the collusion process among 𝑆 is given as follows:

• At date −1, each agent 𝑖 learns his 𝜃𝑖.
• At date 0, the MD proposes the mechanism (𝑞, 𝑡).
• At date 1, each agent either accepts or rejects the mechanism (𝑞, 𝑡).
• At date 1 1

4 , a mediator proposes an 𝑆-side contract to coalition 𝑆 .

• At date 1 1
2 , each agent in 𝑆 accepts or rejects the 𝑆-side contract.

• At date 1 3
4 , if all agents in 𝑆 accept the 𝑆-side contract, then it prescribes the strategy of coalition members at date 2 and the 

side transfer is realized. Otherwise, no collusion occurs and the agents proceed to date 2 noncooperatively.

• At date 2, if all agents accept (𝑞, 𝑡), then it is played; in addition, reallocation within the coalition is realized. Otherwise, agents 
get their reservation utilities 0.

Specifically, at date 1 1
4 , a mediator benevolent to a coalition 𝑆 can secretly approach 𝑆 and offer an 𝑆-side contract (𝛿𝑆 , 𝜓𝑆 ), 

which consists of a joint reporting strategy 𝛿𝑆 ∶ Θ𝑆 → Δ(Θ𝑆 ) and a side transfer rule, i.e., a mapping 𝜓𝑆 ∶ Θ𝑆 → ℝ|𝑆| such that ∑
𝑖∈𝑆 𝜓

𝑆
𝑖
(𝜃𝑆 ) = 0 for all 𝜃𝑆 ∈Θ𝑆 .

6 In this example, the construction also works beyond the MEU preference. For instance, assume that agents face extreme ambiguity but follow the 𝛼-maxmin 
expected utility of Ghirardato and Marinacci (2002), i.e., assign weight 𝛼 > 0.5 to the worst-case transfer rule and 1 − 𝛼 < 0.5 to the best case. If the MD knows the 
value of 𝛼, then she can also scale up the multiplier 𝜆 so that IC is guaranteed. To see this, we revisit the IC constraint of 𝜃𝐻1 . Under truthful revelation, the 𝛼-maxmin 
expected utility of 𝜃𝐻1 is equal to 0, but misreporting with probability 𝛾 leads to the 𝛼-maxmin expected utility of

𝛼min{𝛾(0.8 − 𝜆), 𝛾(0.8 + 𝜆)} + (1 − 𝛼)max{𝛾(0.8 − 𝜆), 𝛾(0.8 + 𝜆)} = 𝛾(0.8 + (1 − 2𝛼)𝜆),

which is nonpositive if the MD chooses a large multiplier 𝜆 ⩾ 0.8
2𝛼−1

. It is worth noting that for the ambiguity neutral case (𝛼 = 0.5), the lower bound on the right-hand 
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side is not well-defined, and this ambiguous mechanism is perceived as a standard Bayesian mechanism that is a convex combination of ̂𝑡 and ̂̂𝑡 with equal weights.
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Following Che and Kim (2006), we focus on the outcome implemented as a result of the 𝑆-side contract. Given (𝑞, 𝑡) and 𝑆 , 
we say (𝑞 ∶ Θ → 𝐴, ̃𝑡 ∶ Θ → ℝ𝑛) is an 𝑆-reallocational manipulation, if there exists an 𝑆-side contract (𝛿𝑆 , 𝜓𝑆 ), such that for all 
𝜃 ∈Θ,

𝑡𝑖(𝜃) =

{∑
𝜃′
𝑆
∈Θ𝑆 𝑡𝑖(𝜃

′
𝑆
, 𝜃−𝑆 )𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ) +𝜓

𝑆
𝑖
(𝜃𝑆 ) if 𝑖 ∈ 𝑆, (a)∑

𝜃′
𝑆
∈Θ𝑆 𝑡𝑖(𝜃

′
𝑆
, 𝜃−𝑆 )𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ) otherwise, (b)

(1)

𝑢0(𝑞(𝜃)) =
∑

𝜃′
𝑆
∈Θ𝑆

𝑢0
(
𝑞(𝜃′

𝑆
, 𝜃−𝑆 )

)
𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ), (2)

𝑢𝑖(𝑞(𝜃), 𝜃) =
∑

𝜃′
𝑆
∈Θ𝑆

𝑢𝑖
(
𝑞(𝜃′

𝑆
, 𝜃−𝑆 ), 𝜃

)
𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ),∀𝑖 ∉ 𝑆. (3)

By (1a) and (1b), after the coalitional manipulation, agents in 𝑆 receive monetary transfers according to the manipulated reports 
as well as side transfers, but agents out of 𝑆 only receive the former. By (2) and (3), the reallocation can only take place within 𝑆
and thus should be undetectable by the MD and the noncollusive agents (agents out of 𝑆). If equation (3) also holds for all 𝑖 ∈ 𝑆 , 
then (𝑞, ̃𝑡) reduces to an 𝑆-communicative manipulation, which does not involve reallocation of the outcome. Given (𝑞, 𝑡), we 
may denote (𝑞, ̃𝑡), an 𝑆-reallocational manipulation (resp. 𝑆-communicative manipulation) induced by 𝑆-side contract (𝛿𝑆, 𝜓𝑆 ), as 
(𝑞, 𝑡𝛿𝑆 + 𝜓𝑆 ) (resp. (𝑞𝛿𝑆 , 𝑡𝛿𝑆 + 𝜓𝑆 )) to highlight its structure. The 𝑆-reallocational manipulation (𝑞, ̃𝑡) is said to be 𝑆-feasible, if no 
agent in 𝑆 has the incentive to decline or misreport in (𝑞, ̃𝑡), i.e.,

𝑆-IR 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎̄𝑖) ⩾ 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎̄𝑖),∀𝑖 ∈ 𝑆,𝜃𝑖 ∈Θ𝑖,

𝑆-IC 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎̄𝑖) ⩾ 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎𝑖),∀𝑖 ∈ 𝑆,𝜃𝑖 ∈Θ𝑖, 𝜎𝑖 ∶ Θ𝑖 →Δ(Θ𝑖).

Although the above 𝑆-IR constraint is an interim one, i.e., is stated for each 𝜃𝑖 ∈ Θ𝑖, a weighted sum of the above 𝑆-IR constraints 
across all 𝑖 ∈ 𝑆 and 𝜃𝑖 ∈Θ𝑖 implies that∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 )𝑝(𝜃𝑆 ) =
∑
𝑖∈𝑆

∑
𝜃𝑖∈Θ𝑖

𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎̄𝑖)𝑝(𝜃𝑖)

𝑆-IR

⩾
∑
𝑖∈𝑆

∑
𝜃𝑖∈Θ𝑖

𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎̄𝑖)𝑝(𝜃𝑖) =
∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 )𝑝(𝜃𝑆 ).

Namely, engaging in collusion does not hurt 𝑆 in terms of members’ aggregate ex-ante utility.

In the collusion-proofness notion adopted by Che and Kim (2006), only one coalition, denoted by 𝑆 , may be formed. Agents can 
collude via any 𝑆-feasible reallocational manipulation, but if a collusion takes place, it should neither hurt the MD nor lead to an 
infeasible mechanism. In particular, if a manipulation of 𝑆 is anticipated but violates noncollusive agents’ IR or IC constraints, then 
the noncollusive agents will decline or misreport in the main mechanism, which eventually jeopardizes the MD’s payoff.

Formally, for any 𝑆 ∈ 2𝐼∖{∅} with |𝑆| ⩾ 2, a feasible mechanism (𝑞, 𝑡) is said to satisfy the robust collusion-proofness condition 
with respect to 𝑆 (RCP with respect to 𝑆), if every 𝑆-feasible 𝑆-reallocational manipulation (𝑞, ̃𝑡) is a feasible mechanism and satisfies∑

𝜃∈Θ
[𝑢0

(
𝑞(𝜃)

)
−
∑
𝑖∈𝐼

𝑡𝑖(𝜃)]𝑝(𝜃) =
∑
𝜃∈Θ

[𝑢0
(
𝑞(𝜃)

)
−
∑
𝑖∈𝐼

𝑡𝑖(𝜃)]𝑝(𝜃).

In the current paper, we assume that the MD is concerned about joint manipulations of all possible coalitions, rather than just 
one. Hence, our collusion-proofness notion is more demanding than requiring RCP with respect to any particular coalition. A feasible 
mechanism (𝑞, 𝑡) is said to satisfy the robust collusion-proofness condition (RCP) if it satisfies RCP with respect to every 𝑆 ∈ 2𝐼∖{∅}
with |𝑆| ⩾ 2.

4.2. Result

In a two-agent two-type framework, Laffont and Martimort (2000) imply that the MD may fail to obtain FSE via a standard 
Bayesian mechanism that satisfies RCP with respect to the only coalition, i.e., the grand one.7 However, according to Che and 
Kim (2006), in a framework with at least three agents, for any finite type space and almost every prior over it, the corresponding 
information structure can guarantee FSE via mechanisms satisfying RCP with respect to the grand coalition.

In this section, Proposition 1 shows that the RCP condition, or the unknown makeup of the colluding coalition, drastically restricts 
the information structures that guarantee FSE. This result extends Laffont and Martimort (2000)’s negative message on collusion-

proof FSE to environments with more agents and more types, and significantly weakens the positive result of Che and Kim (2006). 
Hence, collusion of unknown coalitions is one potential resolution of Crémer and McLean (1985, 1988)’s paradox.

7 In fact, the collusion-proofness notion of Laffont and Martimort (2000) is called “weak collusion-proofness”. Che and Kim (2006) have shown that when a 
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mechanism extracts the full surplus and thus involves an efficient allocation rule, the requirement of RCP with respect to 𝐼 is stronger than weak collusion-proofness.
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Proposition 1. Suppose Θ is such that 𝑛 ⩾ 4 and |Θ| ⩾ 24, and that there exists 𝑗 ∈ 𝐼 for whom |Θ𝑗 | ⩽ |Θ−𝑗 | and |Θ𝑖| ⩽ |Θ−𝑗−𝑖| for all 
𝑖 ∈ 𝐼∖{𝑗}. Under almost every prior 𝑝 ∈ Δ(Θ), the information structure (Θ, 𝑝) cannot guarantee FSE via mechanisms satisfying the RCP 
condition.

In Proposition 1, the dimensional restrictions are satisfied under the most commonly studied case where agents’ type sets are 
equally large and when the number of agents is large enough: when 𝑛 ⩾ 5, or 𝑛 ⩾ 4 and each agent has at least three types. 
Also, notice that Proposition 1 provides a sufficient condition on the information structure such that collusion-proof FSE cannot be 
guaranteed. This condition is not necessary: there are other information structures that cannot guarantee collusion-proof FSE. Recall 
the two-agent public good example of Laffont and Martimort (2000) discussed in Section 3.

At last, we provide a sketch of the proof and leave the details to Appendix A.2. This proof follows a duality approach and is 
different from the argument of Laffont and Martimort (2000).

We first establish the following result irrespective of the dimensionality of Θ.

Lemma 1. Under any information structure (Θ, 𝑝), there exists a payoff structure (𝑢0, (𝑢𝑖)𝑖∈𝐼 ), such that for any FSE standard Bayesian 
mechanism (𝑞, 𝑡), there exists 𝑆 ∈ {𝐼∖{𝑛}, 𝐼} and two type profiles 𝜃𝑆 ≠ 𝜃′

𝑆
∈Θ𝑆 such that 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝜃′𝑆 ) > 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝜃𝑆 ).

Then we fix an FSE mechanism (𝑞, 𝑡) and one 𝑆 such that the above inequality holds. Let 𝛿𝑆 ∶ Θ𝑆 → Δ(Θ𝑆 ) be a joint reporting 
strategy that maximizes the ex-ante total utility of all agents in 𝑆 , which cannot be the truthful reporting strategy.

Now consider a sub-environment with agents in 𝑆 only. Let (Θ𝑆, 𝑝̂) be the information structure, where 𝑝̂ is the marginal dis-

tribution of 𝑝 over Θ𝑆 . Under our dimensionality restriction, almost every 𝑝 ∈ Δ(Θ) leads to 𝑝̂ satisfying the Convex Independence 
condition and the Identifiability condition (Definition 3 in Appendix A.1) in the sub-environment. Crucially, we show the existence 
of a side transfer rule 𝜓𝑆 such that (𝑞𝛿𝑆 , 𝑡𝛿𝑆 + 𝜓𝑆 ) is an 𝑆-feasible 𝑆-communicative manipulation. This is done by adapting the 
main result of Kosenok and Severinov (2008) to a sub-environment with agents in 𝑆 only: there exists an ex-post budget balanced 
𝜓𝑆 ∶ Θ𝑆 → ℝ|𝑆| such that it is part of a feasible mechanism. The feasibility is then used to establish the 𝑆-feasibility of the 𝑆-

communicative manipulation in the original environment. Since 𝑞 is efficient, the 𝑆-communicative manipulation either decreases 
the ex-ante payoff of the MD, or hurts at least one agent out of 𝑆 . In either case, (𝑞, 𝑡) does not satisfy RCP with respect to 𝑆 , and 
thus does not satisfy RCP.

5. Ambiguous mechanisms

5.1. Definitions

Section 4 has shown that it may be difficult to achieve FSE via standard Bayesian mechanisms satisfying the RCP condition. 
To resolve this problem, we follow the motivating example and allow the MD to consider a broader set of tools called ambiguous 
mechanisms (see, e.g., Bose and Renou, 2014; Di Tillio et al., 2017; Guo, 2019; Tang and Zhang, 2021) and assume that agents are 
ambiguity averse with respect to the engineered ambiguity.

An ambiguous mechanism is a publicly announced nonempty compact set of mechanisms, among which agents do not know 
the true mechanism that the MD has committed to.8 Other than the ambiguity engineered by the MD, we assume that there is no 
other exogenous ambiguity and agents still share an unambiguous common prior 𝑝. This simplifying assumption helps us to compare 
the results in the current section with those from the previous section, and thus highlight the freedom granted by ambiguous 
mechanisms. As we will show in this section, focusing on direct mechanisms and ambiguity in transfer rules alone is sufficient to turn 
the technically unpermissive result on collusion-proof FSE in Section 4 into a possibility result.9 Hence, for FSE, we focus on the case 
where all mechanisms share an efficient allocation rule 𝑞, and 𝑇 is the set of potential transfer rules. Formally, given (𝑢0, (𝑢𝑖)𝑖∈𝐼 ), we 
say an ambiguous mechanism (𝑞, 𝑇 ) achieves FSE, if it is feasible (remains to be redefined) and∑

𝜃∈Θ
[𝑢0

(
𝑞(𝜃)

)
−
∑
𝑖∈𝐼

𝑡𝑖(𝜃)]𝑝(𝜃) = 𝐹𝑆,∀𝑡 ∈ 𝑇 . (4)

When the set 𝑇 is a singleton, the ambiguous mechanism reduces to a standard Bayesian mechanism that we have been using in 
previous sections.

For simplicity, we assume that each agent uses a special format of the maxmin expected utility (MEU) of Gilboa and Schmeidler 
(1989): in particular, an agent makes decision with the worst-case mechanism only. Formally, assume that an agent 𝑖 ∈ 𝐼 with 
type 𝜃𝑖 ∈ Θ𝑖 holds a nonempty, compact, and convex set of probabilistic assessments over 𝑇 × Θ−𝑖: the set of all distributions over 
𝑇 ×Θ−𝑖 whose marginal distribution over Θ−𝑖 is 𝑝(⋅|𝜃𝑖). In the multiple-belief set, the worst-case expected utility of following strategy 
𝜎𝑖 ∶ Θ𝑖 → Δ(Θ𝑖) is 𝑉𝑖[𝑞, 𝑇 ](𝜃𝑖, 𝜎𝑖) ≡min𝑡∈𝑇 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎𝑖). When 𝑇 is a singleton, the MEU is consistent with the subjective expected 
utility. By replacing 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎𝑖) with 𝑉𝑖[𝑞, 𝑇 ](𝜃𝑖, 𝜎𝑖), we can redefine the IR, IC, and the feasibility conditions. As is discussed 

8 We impose the compactness assumption so that the minimization operator can be conveniently used.
9 Bose and Renou (2014) have introduced an indirect mechanism to engineer ambiguous beliefs. When ambiguous beliefs are present, Renou (2015) and Lopomo 

et al. (2020) show that it is no longer generically possible to guarantee FSE. Whether inducing ambiguous beliefs and ambiguous mechanisms simultaneously can 
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further help the MD in achieving FSE (or collusion-proof FSE) remains an open question.
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in Section 3, the usefulness of ambiguous mechanisms in overturning the negative result in Section 4 does not necessarily require 
the extreme format of MEU, but requires strict ambiguity aversion. If agents are ambiguity neutral instead, even if an ambiguous 
mechanism (𝑞, 𝑇 ) is provided, agents would reduce (𝑞, 𝑇 ) to a standard Bayesian mechanism (𝑞, 𝑡) where 𝑡 is a convex combination 
of transfer rules in 𝑇 . In this case, the unpermissive result of Proposition 1 also applies to the ambiguity neutrality scenario.

It is natural to assume that a coalition 𝑆 can also collude via an ambiguous 𝑆-side contract. We will discuss later the case where 
each potential side transfer rule takes a similar form as the one in Section 4, i.e., requires an input 𝜃𝑆 ∈ Θ𝑆 only. For now, we 
generalize each potential side transfer rule by allowing it to depend on 𝜃𝑆 ∈ Θ𝑆 , 𝜃−𝑆 ∈ Θ−𝑆 , and 𝑡 ∈ 𝑇 , where the latter two are 
revealed from the main mechanism. This makes the set of ambiguous 𝑆-side contract (weakly) broader and thus makes collusion 
(weakly) easier. An ambiguous 𝑺-side contract is a pair (𝛿𝑆 , Ψ𝑆 ), where Ψ𝑆 is a set of potential side transfer rules and each element 
in it, 𝜓𝑆 ∶ 𝑇 ×Θ →ℝ|𝑆|, is required to satisfy 

∑
𝑖∈𝑆 𝜓

𝑆
𝑖
(𝑡, 𝜃) = 0 for all 𝑡 ∈ 𝑇 and 𝜃 ∈Θ.

The timing of the ambiguous mechanism and the ambiguous 𝑆-side contract is almost identical with that described in Section 4

except for minor differences at dates 1 3
4 and 2.

• At date 1 3
4 , if all agents in 𝑆 accept (𝛿𝑆 , Ψ𝑆 ), then 𝛿𝑆 prescribes the strategy of coalition members at date 2 and the mediator 

uncovers the side transfer rule that she secretly commits to. Otherwise, no collusion occurs and the agents proceed to date 2
noncooperatively.

• At date 2, if all agents accept (𝑞, 𝑇 ), they report to the mechanism (𝑞, 𝑇 ), and then the MD uncovers the true transfer rule 𝑡 ∈ 𝑇
that she secretly commits to as well as the types reported to (𝑞, 𝑇 ); allocation and transfers are realized according to 𝑞 and 𝑡 ∈ 𝑇 ; 
in addition, reallocation and the side transfer within 𝑆 are realized. Otherwise, agents get their reservation utilities 0.

Relative to the timing described in Section 4, we postpone the payment of the side transfer in this section to date 2 after 𝜃−𝑆 ∈ Θ−𝑆
and 𝑡 ∈ 𝑇 are realized from the main mechanism.

Given (𝑞, 𝑇 ) and coalition 𝑆 , we say (𝑞, 𝑇̃ ) is an ambiguous 𝑺-reallocational manipulation, if there exists an ambiguous 𝑆-side 
contract (𝛿𝑆 , Ψ𝑆 ) such that (𝑖) for each 𝑡 ∈ 𝑇̃ , there exists 𝑡 ∈ 𝑇 and 𝜓𝑆 ∈Ψ𝑆 such that for all 𝜃 ∈Θ,

𝑡𝑖(𝜃) =
∑

𝜃′
𝑆
∈Θ𝑆

𝑡𝑖(𝜃′𝑆 , 𝜃−𝑆 )𝛿
𝑆 [𝜃𝑆 ](𝜃′𝑆 ) +𝜓

𝑆
𝑖 (𝑡, 𝜃) if 𝑖 ∈ 𝑆, (5)

and (1b), (2), and (3) are satisfied, and (𝑖𝑖) for each 𝑡 ∈ 𝑇 and 𝜓𝑆 ∈ Ψ𝑆 , the transfer rule 𝑡 defined by (5) and (1b) is an element of 
𝑇̃ . From this ambiguous 𝑆-reallocational manipulation, we assume that type-𝜃𝑖 agent 𝑖’s MEU from following 𝜎𝑖 takes the form

𝑉𝑖[𝑞, 𝑇̃ ](𝜃𝑖, 𝜎𝑖)

=

⎧⎪⎪⎨⎪⎪⎩
min

𝜓𝑆∈Ψ𝑆 ,𝑡∈𝑇

∑
𝜃̂𝑖∈Θ𝑖

[
𝑉𝑖[𝑞, 𝑡𝛿

𝑆 ](𝜃𝑖, 𝜃̂𝑖) +
∑

𝜃−𝑖∈Θ−𝑖

𝜓𝑆𝑖 (𝑡, 𝜃̂𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖)]𝜎𝑖[𝜃𝑖](𝜃̂𝑖), if 𝑖 ∈ 𝑆,

min
𝑡∈𝑇

∑
𝜃̂𝑖∈Θ𝑖

𝑉𝑖[𝑞, 𝑡𝛿
𝑆 ](𝜃𝑖, 𝜃̂𝑖)𝜎𝑖[𝜃𝑖](𝜃̂𝑖), if 𝑖 ∉ 𝑆.

We may also denote this ambiguous 𝑆-reallocational manipulation by (𝑞, 𝑇 𝛿𝑆 +Ψ𝑆 ) to highlight its structure.

By replacing every 𝑉𝑖[𝑞, ̃𝑡](𝜃𝑖, 𝜎𝑖) in Section 4 with 𝑉𝑖[𝑞, 𝑇̃ ](𝜃𝑖, 𝜎𝑖), we can redefine the 𝑆-feasibility condition for an ambiguous 
𝑆-reallocational manipulation and the robust collusion-proofness* (RCP*) condition for an ambiguous mechanism. If we do not 
allow 𝜃−𝑆 ∈Θ−𝑆 and 𝑡 ∈ 𝑇 to be part of the inputs of each 𝜓𝑆 ∈Ψ𝑆 , as in Section 4, then the RCP* condition reduces to the robust 
collusion-proofness (RCP) condition under ambiguous mechanisms.

5.2. Result

Do ambiguous mechanisms help the MD guarantee FSE via collusion-proof mechanisms? If yes, to what extent? To answer these 
questions, we first adapt the Beliefs Determine Preferences property of Neeman (2004) and introduce a definition.

Definition 1.

1. For 𝑆 ∈ 2𝐼∖{∅, 𝐼}, the prior 𝑝 satisfies the 𝑆-Beliefs Determine Preferences (𝑆-BDP) property, if 𝑝(⋅|𝜃𝑆 ) ≠ 𝑝(⋅|𝜃′𝑆 ) for each pair 
of 𝜃𝑆 ≠ 𝜃′

𝑆
∈Θ𝑆 .

2. The prior 𝑝 satisfies the Beliefs Determine Preferences (BDP) property, if it satisfies the 𝑆-BDP property for all singleton 𝑆 ∈ 2𝐼 .

3. The prior 𝑝 satisfies the Coalition Beliefs Determine Preferences (CBDP) property, if it satisfies the 𝑆-BDP property for all 
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𝑆 ∈ 2𝐼∖{∅, 𝐼}.
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The CBDP property implies that knowing the posterior belief of some 𝑆 ∈ 2𝐼∖{∅, 𝐼} over types of agents in 𝐼∖𝑆 can uniquely 
identify the type profile of 𝑆 . By definition, the CBDP property implies the BDP property.10 When agents have independent beliefs, 
the prior neither satisfies the BDP property nor the CBDP property. However, the BDP and CBDP properties impose a weak restriction 
on priors over a fixed finite-dimensional Θ: among all priors over Θ, the ones for which the CBDP property fails constitute a set of 
measure zero.11

Proposition 2 shows that the CBDP property characterizes information structures that guarantee the existence of an FSE ambiguous 
mechanism satisfying the RCP* condition.

Proposition 2. Given an information structure (Θ, 𝑝), the following statements are equivalent:

1. The CBDP property holds for prior 𝑝.
2. The information structure (Θ, 𝑝) guarantees FSE via ambiguous mechanisms satisfying the RCP* condition.

As the RCP* condition is stronger than the RCP condition, we immediately have the following result.

Corollary 1. Given an information structure (Θ, 𝑝), if the CBDP property holds for prior 𝑝, then the information structure (Θ, 𝑝) guarantees 
FSE via ambiguous mechanisms satisfying the RCP condition.

A sketch of the proof to Proposition 2 is provided below and details are relegated to Appendix A.3.

To establish Statement 2 ⇒ Statement 1, we begin with any information structure where the prior does not satisfy the CBDP 
property. When the prior does not satisfy the BDP property, we construct a payoff structure for which there exists no FSE ambiguous 
mechanism. When the prior satisfies the BDP property but violates the CBDP property, we can construct a payoff structure, so that 
for every FSE ambiguous mechanism, there is an ex-ante strictly profitable joint reporting strategy for a coalition. Taking advantage 
of the BDP property, Lemma 5 constructs an ambiguous side contract to implement the collusion. The consequent communicative 
manipulation hurts either the MD or a noncollusive agent, and thus this FSE ambiguous mechanism cannot satisfy the RCP* condition.

To sketch the proof of Statement 1 ⇒ Statement 2, we first establish the existence of a transfer rule 𝜂, under which the MD’s 
ex-post payoff, 𝑢0

(
𝑞(𝜃)

)
−
∑
𝑖∈𝐼 𝜂𝑖(𝜃), is constant and equal to 𝐹𝑆 , and agents’ IR constraints bind. The feature of constant ex-post 

payoff will be useful in preventing any 𝐼 -feasible ambiguous 𝐼 -reallocational manipulation from affecting the MD’s payoff. However, 
𝜂 neither addresses the IC constraints, nor the RCP* condition with respect to any non-grand coalition 𝑆 . Therefore, we adjust 𝜂 with 
two groups of transfer rules. The following lemmas are helpful.

Lemma 2. For any coalition 𝑖 ∈ 𝑆 , and 𝜃̄𝑖 ∈ Θ𝑖, if there does not exist 𝜃̂𝑖 ∈ Θ𝑖∖{𝜃̄𝑖} such that 𝑝(⋅|𝜃̂𝑖) = 𝑝(⋅|𝜃̄𝑖), then there exists an ex-post 
budget balanced transfer rule 𝜙𝜃̄𝑖 ∶ Θ →ℝ𝑛 such that

(i)
∑
𝜃−𝑗∈Θ−𝑗

𝜙
𝜃̄𝑖
𝑗
(𝜃𝑗 , 𝜃−𝑗 )𝑝(𝜃−𝑗 |𝜃𝑗 ) = 0 for all 𝑗 ∈ 𝐼 and 𝜃𝑗 ∈Θ𝑗 ,

(ii)
∑
𝜃−𝑖∈Θ−𝑖

𝜙
𝜃̄𝑖
𝑖
(𝜃̂𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃̄𝑖) < 0 for all 𝜃̂𝑖 ∈Θ𝑖∖{𝜃̄𝑖}.

Lemma 2 is an immediate result of Lemma 4 in Appendix A.1. Hence, we omit the proof of Lemma 2. It is useful in constructing 
an ambiguous mechanism that overcomes type-𝜃̄𝑖 agent 𝑖’s incentive to misreport.

Lemma 3. Fix any 𝑆 ∈ 2𝐼 with 2 ⩽ |𝑆| ⩽ 𝑛 − 1. If the 𝑆-BDP property holds, then there exists an ex-post budget balanced transfer rule 
𝜙𝑆 ∶ Θ →ℝ𝑛 such that

(i)
∑
𝜃−𝑖∈Θ−𝑖

𝜙𝑆
𝑖
(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) = 0 for all 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖;

(ii)
∑
𝜃̂𝑆∈Θ𝑆

∑
𝜃̄𝑆∈Θ𝑆

∑
𝑖∈𝑆

∑
𝜃−𝑆∈Θ−𝑆

𝜙𝑆
𝑖
(𝜃̂𝑆 , 𝜃−𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 )𝛿𝑆 [𝜃̄𝑆 ](𝜃̂𝑆 ) < 0 for all non-truthful deterministic 𝛿𝑆 ≠ 𝛿𝑆 .

When 𝑛 ⩾ 3, Lemma 3 is helpful to construct an ambiguous mechanism that is immune from collusion of the non-grand coalition 
𝑆 . Note that Lemma 3 imposes the equality constraints on individual agents at the interim stage (i.e., at each 𝜃𝑖 ∈ Θ𝑖), similar to 
Lemma 2. However, Lemma 3 imposes the inequality constraint at the ex-ante stage for the coalition 𝑆 as a whole.

When the CBDP property holds, define 𝑇 = {𝜂 + 𝜆1𝜙𝜃𝑖 |𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖} ∪ {𝜂 + 𝜆2𝜙𝑆 |𝑆 ∈ 2𝐼∖{∅, 𝐼}with 2 ⩽ |𝑆| ⩽ 𝑛 − 1}, where 𝜆1
and 𝜆2 are two large numbers.12

10 To see that the CBDP property can be strictly stronger, consider an example with 𝐼 = {1, 2, 3} and Θ𝑖 = {𝜃1
𝑖
, 𝜃2
𝑖
} for each 𝑖 ∈ 𝐼 . We collapse the agent index and 

denote, for instance, (𝜃11 , 𝜃22 , 𝜃13 ) by 𝜃121 . The following prior 𝑝 satisfies the BDP property, where 𝑝(𝜃111) = 0.1, 𝑝(𝜃112) = 0.2, 𝑝(𝜃121) = 0.1, 𝑝(𝜃122) = 0.1, 𝑝(𝜃211) = 0.1, 
𝑝(𝜃212) = 0.1, 𝑝(𝜃221) = 0.2, and 𝑝(𝜃222) = 0.1. However, 𝑝(⋅|𝜃11 , 𝜃22 ) = 𝑝(⋅|𝜃21 , 𝜃12 ) = (0.5, 0.5), and thus, 𝑝 does not satisfy the CBDP property.
11 Following Crémer and McLean (1988), Che and Kim (2006), and Kosenok and Severinov (2008), the current paper focuses on a fixed finite type space to study 

mechanism design with correlated beliefs. Without fixing the dimension of the type space a priori, there are works (see, e.g., Heifetz and Neeman, 2006; Chen and 
Xiong, 2013) discussing how generic the BDP property is.
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12 When 𝑛 = 2, 𝑇 = {𝜂 + 𝜆1𝜙𝜃𝑖 |𝑖 ∈ 𝐼, ̃𝜃𝑖 ∈Θ𝑖} satisfies the RCP* condition.
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The IR constraints bind in this ambiguous mechanism, because 𝜂 is constructed such that IR constraints bind, and because of 
requirement (𝑖) in Lemma 2 and requirement (𝑖) in Lemma 3. Notice that no ambiguity is perceived by any type-𝜃𝑖 agent 𝑖 when all 
agents truthfully report, because under each 𝑡 ∈ 𝑇 , the interim payoff of 𝜃𝑖 is zero.

It is important to notice that this ambiguous mechanism gives the MD a constant ex-post payoff that is equal to 𝐹𝑆 under 
each 𝑡 ∈ 𝑇 , because 𝜂 is constructed in such a way, and because of the ex-post budget balance of each 𝜙𝜃𝑖 and 𝜙𝑆 . Namely, our 
ambiguous mechanism is a full-insurance mechanism from the MD’s perspective. As a result, no 𝐼 -feasible ambiguous 𝐼 -reallocational 
manipulation can affect the MD’s payoff, which establishes the RCP* condition with respect to 𝐼 .

The set {𝜂 + 𝜆1𝜙𝜃𝑖 |𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖} makes sure that agents have no incentive to misreport unilaterally. To see this, by (𝑖𝑖) in 
Lemma 2, any unilateral deviation earns type-𝜃̃𝑖 agent 𝑖 a negative expected transfer under 𝜙𝜃𝑖 . When the multiplier 𝜆1 is sufficiently 
large, 𝜂+𝜆1𝜙𝜃𝑖 ∈ 𝑇 gives 𝜃𝑖 a negative expected utility, which bounds his MEU of misreporting from above and eventually establishes 
the IC condition.

Suppose a mediator secretly approaches coalition 𝑆 with 2 ⩽ |𝑆| ⩽ 𝑛 −1 and proposes an ambiguous 𝑆-side contract that involves 
misreporting. Under transfer rule 𝑡 = 𝜂 + 𝜆2𝜙𝑆 ∈ 𝑇 , the total utility of coalition 𝑆 under the manipulation is negative in the ex-ante 
stage. This implies that no ambiguous 𝑆-side contract involving misreporting can lead to an 𝑆-IR, and a fortiori an 𝑆-feasible, 
ambiguous 𝑆-reallocational manipulation. Hence, (𝑞, 𝑇 ) satisfies the RCP* condition with respect to 𝑆 .

5.3. Discussions

We now discuss the connection of our Proposition 2 with the literature in detail.

If we view the results of Crémer and McLean (1985, 1988) as a paradox, our Proposition 1 shows that collusion can be one 
resolution of the paradox, but Proposition 2 shows that the use of ambiguous mechanisms can restore the paradox.

In particular, in the two-agent setup, Proposition 2 can soften the theoretically unpermissive result of Laffont and Martimort 
(2000) on collusion-proof FSE. Notice that with only two agents, the CBDP property is equivalent to the BDP property, under which 
we can guarantee collusion-proof FSE.

Our Proposition 2 is also related to Theorem 2 and Corollary 2 of Che and Kim (2006), where it is shown that if the prior satisfies 
Convex Independence and their Condition PI’, then the corresponding information structure can guarantee FSE via standard Bayesian 
mechanisms that satisfy the RCP condition with respect to 𝐼 . Our CBDP property is neither stronger nor weaker than their sufficient 
conditions. However, recall that our RCP* condition is stronger than their collusion-proofness notion (RCP with respect to 𝐼), partly 
because we require the mechanism to be immune from all coalitions’ manipulations, and partly because we allow side contracts to 
address more contingencies. In fact, when aiming to design an FSE ambiguous mechanism that is RCP with respect to 𝐼 only, we 
can modify the current proofs and show that the BDP property, which is weaker than Convex Independence, is sufficient. Namely, 
ambiguous mechanisms are more potent in achieving collusion-proof FSE in the sense of Che and Kim (2006), even when a coalition 
can use ambiguous side contracts to combat the ambiguity in the main mechanism. Moreover, our paper provides a construction of 
an FSE (ambiguous) mechanism that satisfies the RCP/RCP* condition with respect to any non-grand coalition 𝑆 , but the counterpart 
under Bayesian mechanisms has not been explicitly studied. Che and Kim (2006) provide a Bayesian mechanism that satisfies the 
RCP condition with respect to one known non-grand coalition 𝑆 under independent beliefs, but not under correlated beliefs which 
are necessary for guaranteeing FSE.

The current paper also extends the approach of Guo (2019), where it is shown that FSE can be guaranteed under ambiguous 
mechanisms if and only if the prior satisfies the BDP property. The leading distinction is that the current paper focuses on collusion 
concerns, which bring new challenges in constructing a full-insurance transfer rule 𝜂, preventing an ex-ante profitable deviation in 
Lemma 3, and designing the ambiguous side contract in Lemma 5, etc. In addition, we remark that the earlier paper, as well as 
many works on mechanism design under ambiguity, only focuses on pure strategy deviations, which may be with loss of generality 
because mixed strategies sometimes can be played to hedge against ambiguity.13 However, the current paper explicitly addresses 
misreporting in mixed strategies, and thus, the concern of hedging does not apply.

For simplicity, the paper has been assuming that agents only consider the worst-case mechanism. This assumption is a bit extreme, 
but there are less extreme MEU models under which our results at least hold partially. As a brief illustration, we adjust the ambiguous 
mechanism satisfying the RCP* condition constructed for Proposition 2 into a “symmetric” one so that it works under the MEU model 
with 𝜖-contaminated multiple-belief set used in, e.g., Bose and Daripa (2009). Let 𝑇 ≡ {𝜂+𝜆1𝜙𝜃𝑖 |𝑖 ∈ 𝐼, 𝜃𝑖 ∈Θ𝑖} ∪{𝜂−𝜆1𝜙𝜃𝑖 |𝑖 ∈ 𝐼, 𝜃𝑖 ∈
Θ𝑖} ∪ {𝜂 + 𝜆2𝜙𝐶 |𝐶 ∈ 2𝐼∖{∅, 𝐼}with 2 ⩽ |𝐶| ⩽ 𝑛 − 1} ∪ {𝜂 − 𝜆2𝜙𝐶 |𝐶 ∈ 2𝐼∖{∅, 𝐼}with 2 ⩽ |𝐶| ⩽ 𝑛 − 1}. Suppose an agent’s multiple-

belief set over transfer rules is the collection of convex combinations between the uniform distribution and any other distribution 
with 𝜖 > 0 weight on the latter. In this case, it is easy to enlarge 𝜆1 and 𝜆2 used in the proof of Proposition 2 by a factor of 1

𝜖
to 

establish RCP* under the less extreme MEU model. Again, it is worth noting that for the ambiguity neutral case (𝜖 = 0), the factor is 
not well-defined. In this case, ambiguous mechanisms are perceived as standard Bayesian mechanisms, and are not helpful to achieve 
collusion-proof FSE.14

13 See, for example, Ke and Zhang (2020) for a discussion on randomization at different stages.
14 The above construction also works for the 𝛼-MEU model of Ghirardato and Marinacci (2002) when 𝑛 = 2 and 𝛼 > 0.5, except that we may need to use a different 
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𝜆1 . How to extend our approach to preferences beyond the family of MEU preferences with 𝑛 ⩾ 3 remains an open question.
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6. Concluding remarks

We end the paper with two open questions.

First, there are alternative collusion-proofness notions of interest. One strand of the literature, e.g., Green and Laffont (1979) and 
Safronov (2018), views every coalition 𝑆 as a pseudo agent with type set Θ𝑆 . In Safronov (2018), the pseudo agent has a “utility 
function” which is the sum of members’ utility functions and maximizes the interim utility. The collusion-proofness notion therein 
requires that no pseudo agent has the incentive to misreport. The alternative notion does not affect the main message of the paper, 
i.e., it is difficult to guarantee collusion-proof FSE via standard Bayesian mechanisms, but much easier via ambiguous mechanisms. 
We formalize these results in the Online Appendix.

Moreover, one may consider a variant of the RCP condition where the mediator can only coordinate joint deviations with side 
contracts that are immune from further deviations of coalitions. This requirement restricts the class of side contracts that a mediator 
can use and hence, weakens the RCP condition. Whether such an alternative collusion-proofness notion can soften the theoretically 
unpermissive result in Proposition 1 or relax the necessity of the CBDP property in Proposition 2 remains an open question.

Second, as in Crémer and McLean (1985, 1988), Che and Kim (2006), and Kosenok and Severinov (2008), we focus on properties 
of the information structure such that collusion-proof FSE can be guaranteed. To establish Proposition 1 and the necessity direction of 
Proposition 2, we adopt particular payoff structures for which FSE cannot be achieved. This approach does not exclude the possibility 
that there are payoff structures for which collusion-proof FSE can be achieved. Identifying those payoff structures remains an open 
question.
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Appendix A

A.1. Preparatory notations, definitions, and results

This paper establishes the existence of a transfer rule satisfying certain constraints by applying (a corollary of) the transposition 
theorem of Motzkin (1951) or the alternative theorem of Fredholm (1903). We present them and establish a preparatory lemma for 
constructing an ambiguous mechanism and an ambiguous 𝑆-side contract in Lemmas 2 and 5.

Theorem 1 (Motzkin, 1951). Let 𝐵 ∈ ℝ𝑚×𝑙 and 𝐷 ∈ ℝ𝑘×𝑙 be matrices. Exactly one of the following holds: either the system 𝐵𝑥 < 0𝑚×1, 
𝐷𝑥 = 0𝑘×1 has a column vector solution 𝑥 ∈ℝ𝑙 , or there exist column vectors 𝑦1 ∈ℝ𝑚+∖{0} and 𝑦2 ∈ℝ𝑘 such that 𝐵′𝑦1 +𝐷′𝑦2 = 0𝑙×1.

We remark that 𝐵𝑥 < 0𝑚×1 means that all 𝑚 strict inequalities must hold.

Theorem 2 (Fredholm, 1903). Let 𝐵 ∈ ℝ𝑚×𝑙 be a matrix and 𝑏 be a column vector in ℝ𝑚. Exactly one of the following holds: either the 
system 𝐵𝑥 = 𝑏 has a column vector solution 𝑥 ∈ℝ𝑙 , or 𝐵′𝑦 = 0𝑙×1 has a column vector solution 𝑦 ∈ℝ𝑚 with 𝑦′𝑏 ≠ 0.

To apply these theorems, it is important to construct matrices 𝐵 and 𝐷. As a preparation, we fix any order of the elements in Θ
and define some row vectors in ℝ𝑛|Θ|. For each 𝑥 ∈ℝ𝑛|Θ|, divide its dimensions into 𝑛 blocks of |Θ| dimensions. Let the first block of |Θ| dimensions corresponds to agent 1, ..., and the last block corresponds to agent 𝑛. Within each block, the dimensions correspond 
to elements of Θ. Hence, each dimension of 𝑥 ∈ℝ𝑛|Θ| corresponds to an agent and a type profile.

For each 𝑆 ∈ 2𝐼∖{∅}, 𝐶 ∈ 2𝐼∖{∅, 𝐼} and type profiles 𝜃𝐶 , 𝜃′𝐶 ∈Θ𝐶 (may be identical), we define a row vector 𝑝𝑆
𝜃𝐶𝜃

′
𝐶

∈ℝ𝑛|Θ|+ ∖{0}

as follows. For each 𝑖 ∈ 𝑆 and 𝜃−𝐶 ∈Θ−𝐶 , let the dimension of 𝑝𝑆
𝜃𝐶𝜃

′
𝐶

corresponding to agent 𝑖 and type profile (𝜃′
𝐶
, 𝜃−𝐶 ) be equal to 

𝑝(𝜃𝐶 , 𝜃−𝐶 ), where 𝑝 is the prior. Thus, we have defined |𝑆||Θ−𝐶 | dimensions of 𝑝𝑆
𝜃𝐶𝜃

′
𝐶

. Let all other dimensions of 𝑝𝑆
𝜃𝐶𝜃

′
𝐶

be 0.

For each 𝜃 ∈ Θ and 𝑆 ∈ 2𝐼∖{∅}, define a row vector 𝑒𝑆
𝜃
∈ ℝ𝑛|Θ|+ ∖{0} as follows. For each 𝑖 ∈ 𝑆 , let the dimension of 𝑒𝑆

𝜃
corre-

sponding to 𝑖 and 𝜃 be equal to 1. Thus, we have defined |𝑆| dimensions of 𝑒𝑆
𝜃

. Let all other dimensions of 𝑒𝑆
𝜃

be 0.

For example, let 𝐼 = {1, 2, 3} and Θ𝑖 = {𝜃1
𝑖
, 𝜃2
𝑖
} for each 𝑖 ∈ 𝐼 . We order the eight elements of Θ by: 𝜃111, 𝜃112, 𝜃121, 𝜃122, 𝜃211, 

𝜃212, 𝜃221, 𝜃222, where for instance, 𝜃121 ≡ (𝜃11 , 𝜃
2
2 , 𝜃

1
3). For each vector in ℝ24, its first, second, and third blocks of eight dimensions 

correspond to agents 1, 2, and 3, respectively. Let 01×𝑘 denote a zero row vector in ℝ𝑘. We illustrate with two vectors below and use 
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a box to group every block of eight dimensions:
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𝑝
{3}
(𝜃11 ,𝜃

1
2 )(𝜃

1
1 ,𝜃

2
2 )
= ( 01×8 , 01×8 , 01×2, 𝑝(𝜃111), 𝑝(𝜃112),01×4 );

𝑒
{1,2}
𝜃112

= ( 0,1,01×6 , 0,1,01×6 , 01×8 ).

Lemma 4 below provides a unified approach to establish two technical observations used in the proof of Lemmas 2 and 5. It 
establishes the existence of a budget balanced monetary transfer within a coalition 𝑆 , where 𝑆 may be 𝐼 or a proper subset of 𝐼 . 
The monetary transfer is contingent on all agents’ reported types, rather than those in coalition 𝑆 only. The transfer rule gives each 
agent in 𝑆 zero on-path interim transfer, but gives type-𝜃̄𝑗 agent 𝑗 a negative interim transfer when he unilaterally misreports.

Lemma 4. For any coalition 𝑆 , 𝑗 ∈ 𝑆 , and 𝜃̄𝑗 ∈ Θ𝑗 , if there does not exist 𝜃̂𝑗 ∈ Θ𝑗∖{𝜃̄𝑗} such that 𝑝(⋅|𝜃̂𝑗 ) = 𝑝(⋅|𝜃̄𝑗 ), then there exists a 

transfer rule 𝜉𝜃̄𝑗 ≡ (𝜉𝜃̄𝑗
𝑖

∶ Θ →ℝ)𝑖∈𝑆 such that

(i)
∑
𝑖∈𝑆 𝜉

𝜃̄𝑗
𝑖
(𝜃) = 0 for all 𝜃 ∈Θ,

(ii)
∑
𝜃−𝑖∈Θ−𝑖

𝜉
𝜃̄𝑗
𝑖
(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) = 0 for all 𝑖 ∈ 𝑆 and 𝜃𝑖 ∈Θ𝑖,

(iii)
∑
𝜃−𝑗∈Θ−𝑗

𝜉
𝜃̄𝑗
𝑗
(𝜃̂𝑗 , 𝜃−𝑗 )𝑝(𝜃−𝑗 |𝜃̄𝑗 ) < 0 for all 𝜃̂𝑗 ∈Θ𝑗∖{𝜃̄𝑗}.

Proof. With the vectors defined in this section, we construct matrices 𝐵 ∈ ℝ𝑚×𝑙 and 𝐷 ∈ ℝ𝑘×𝑙 respectively, where 𝑚 = |Θ𝑗 | − 1, 
𝑘 =

∑
𝑖∈𝑆 |Θ𝑖| + |Θ|, and 𝑙 = 𝑛|Θ|. Matrix 𝐵 is obtained by vertically stacking up 𝑚 row vectors 𝑝{𝑗}

𝜃̄𝑗 𝜃̂𝑗
∈ ℝ𝑙+ for all 𝜃̂𝑗 ∈ Θ𝑗∖{𝜃̄𝑗}. 

Construct matrix 𝐷 by stacking up 
∑
𝑖∈𝑆 |Θ𝑖| row vectors 𝑝{𝑖}

𝜃𝑖𝜃𝑖
∈ℝ𝑙+ for all 𝑖 ∈ 𝑆 and 𝜃𝑖 ∈ Θ𝑖 as well as |Θ| row vectors 𝑒𝑆

𝜃
∈ℝ𝑙+ for 

all 𝜃 ∈Θ.

Suppose by way of contradiction that there is no transfer rule 𝜉𝜃̄𝑗 satisfying the three conditions stated in the lemma. Notice 
that within each row of 𝐵 and 𝐷, the dimensions that correspond to an agent out of 𝑆 are equal to zero. Then we can claim that 
𝐵𝑥 < 0𝑚×1, 𝐷𝑥 = 0𝑘×1 has no column vector solution 𝑥 ∈ ℝ𝑙 . By Theorem 1, there are column vectors 𝑦1 ∈ ℝ𝑚+∖{0} and 𝑦2 ∈ ℝ𝑘, 
such that 𝐵′𝑦1 +𝐷′𝑦2 = 0𝑙×1, or equivalently −𝑦′2𝐷 = 𝑦′1𝐵 where both sides are row vectors in ℝ𝑙 . As a result, there exists a profile 
of nonnegative numbers (𝑐𝜃̂𝑗 ∈ ℝ+)𝜃̂𝑗∈Θ𝑗∖{𝜃̄𝑗} with 𝑐𝜃̂𝑗 ∈ ℝ++ for some 𝜃̂𝑗 ∈ Θ𝑗∖{𝜃̄𝑗} and two profiles of numbers (𝑎𝜃𝑖 ∈ ℝ)𝜃𝑖∈Θ𝑖 ,𝑖∈𝑆
and (𝑏𝜃 ∈ℝ)𝜃∈Θ, such that∑

𝑖∈𝑆

∑
𝜃𝑖∈Θ𝑖

𝑎𝜃𝑖 𝑝
{𝑖}
𝜃𝑖𝜃𝑖

+
∑
𝜃∈Θ

𝑏𝜃𝑒
𝑆
𝜃
=

∑
𝜃̂𝑗∈Θ𝑗∖{𝜃̄𝑗}

𝑐𝜃̂𝑗
𝑝
{𝑗}
𝜃̄𝑗 𝜃̂𝑗

, (6)

where both sides are row vectors in ℝ𝑙 .
Fix any 𝜃̂𝑗 with 𝑐𝜃̂𝑗 ≠ 0, 𝑖 ∈ 𝑆 with 𝑖 ≠ 𝑗, and 𝜃−𝑗 ∈Θ−𝑗 .

Recall that on each side of expression (6), each dimension in the row vector corresponds to an agent and a type profile. From 
the dimensions corresponding to 𝑗 and (𝜃̄𝑗 , 𝜃−𝑗 ) on both sides of (6), we have 𝑎𝜃̄𝑗 𝑝(𝜃̄𝑗 , 𝜃−𝑗 ) + 𝑏(𝜃̄𝑗 ,𝜃−𝑗 ) = 0; from the dimensions 
corresponding to 𝑖 and (𝜃̄𝑗 , 𝜃−𝑗 ), we have 𝑎𝜃𝑖𝑝(𝜃̄𝑗 , 𝜃−𝑗 ) + 𝑏(𝜃̄𝑗 ,𝜃−𝑗 ) = 0. As 𝑝 has full support, 𝑎𝜃̄𝑗 = 𝑎𝜃𝑖 .

Similarly, by focusing on the dimensions corresponding to 𝑗 and (𝜃̂𝑗 , 𝜃−𝑗 ) and corresponding to 𝑖 and (𝜃̂𝑗 , 𝜃−𝑗 ) on both sides of 
expression (6), we have 𝑎𝜃̂𝑗 𝑝(𝜃̂𝑗 , 𝜃−𝑗 ) + 𝑏(𝜃̂𝑗 ,𝜃−𝑗 ) = 𝑐𝜃̂𝑗 𝑝(𝜃̄𝑗 , 𝜃−𝑗 ) and 𝑎𝜃𝑖𝑝(𝜃̂𝑗 , 𝜃−𝑗 ) + 𝑏(𝜃̂𝑗 ,𝜃−𝑗 ) = 0. By the observation from the previous 
paragraph, we have (𝑎𝜃̂𝑗 − 𝑎𝜃̄𝑗 )𝑝(𝜃̂𝑗 , 𝜃−𝑗 ) = 𝑐𝜃̂𝑗 𝑝(𝜃̄𝑗 , 𝜃−𝑗 ).

As (𝑎𝜃̂𝑗 − 𝑎𝜃̄𝑗 )𝑝(𝜃̂𝑗 , 𝜃−𝑗 ) = 𝑐𝜃̂𝑗 𝑝(𝜃̄𝑗 , 𝜃−𝑗 ) holds for all 𝜃−𝑗 ∈Θ−𝑗 , it must be the case that (𝑎𝜃̂𝑗 − 𝑎𝜃̄𝑗 )𝑝(𝜃̂𝑗 ) = 𝑐𝜃̂𝑗 𝑝(𝜃̄𝑗 ). Since 𝑐𝜃̂𝑗 ≠ 0, we 
must have 𝑝(⋅|𝜃̂𝑗 ) = 𝑝(⋅|𝜃̄𝑗 ), a contradiction with the supposition of the lemma. □

At last, we review two conditions on the prior introduced by Crémer and McLean (1988) and Kosenok and Severinov (2008) to 
guarantee the existence of first-best mechanisms.

Definition 2. The prior 𝑝 is said to satisfy the Convex Independence condition if for all 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈ Θ𝑖, 𝑝(⋅|𝜃𝑖) ∉
con{𝑝(⋅|𝜃̂𝑖) ∶ 𝜃̂𝑖 ∈Θ𝑖∖{𝜃𝑖}}.

Definition 3. The prior 𝑝 is said to satisfy the Identifiability condition if for any full-support 𝑝′ ∈ Δ(Θ) with 𝑝′ ≠ 𝑝, there exists 
𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖, for which 𝑝′(⋅|𝜃𝑖) ∉ con{𝑝(⋅|𝜃̂𝑖) ∶ 𝜃̂𝑖 ∈Θ𝑖}.

A.2. Proof of Proposition 1

Proof of Lemma 1. Fix any 𝑝 ∈Δ(Θ), 𝑖 ∈ 𝐼 , 𝜃̄ ∈Θ, and 𝜖 ∈ (0, 2𝑝(𝜃̄𝑖)(1−𝑝(𝜃̄𝑖))
2𝑝(𝜃̄𝑖)(1−𝑝(𝜃̄𝑖))+3|Θ| ).
275

Step 1. Construct a payoff structure and an efficient allocation rule 𝑞.
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Table 4

Agents’ utility functions.

(𝑢𝑖, 𝑢𝑗 ) 𝑥1 𝑥2

𝜃𝑖 = 𝜃̄𝑖 (1,1) (2 − 𝜖, 𝑛−2
𝑛−1

)
𝜃𝑖 ≠ 𝜃̄𝑖 (2 − 𝜖, 𝑛−2

𝑛−1
) (1,1)

The set of feasible outcomes is 𝐴 = Δ{𝑥1, 𝑥2}. Agents’ payoffs from a fixed outcome only depend on the type of agent 𝑖 and are 
given in Table 4. In each parenthesis, the first component is the payoff of agent 𝑖 and the second one is that of each 𝑗 ∈ 𝐼∖{𝑖}. Let 
𝑢0(𝑎) = 0 for all 𝑎 ∈𝐴.

Let 𝑞 be the unique efficient allocation rule: 𝑞(𝜃) = 𝑥1 if 𝜃𝑖 = 𝜃̄𝑖, and 𝑞(𝜃) = 𝑥2 elsewhere. The outcome assigned by 𝑞 changes 
only when some type-𝜃𝑖 agent 𝑖, where 𝜃𝑖 ∈Θ𝑖∖{𝜃̄𝑖}, misreports 𝜃̄𝑖, or the other way around.

Step 2. Suppose by way of contradiction that the desired inequality does not hold and reach a contradiction.

For each coalition 𝑆 and type profiles 𝜃𝑆 , 𝜃′
𝑆

, we label the constraint

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝜃𝑆 ) ⩾ 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝜃′𝑆 )

by CIC(𝜃𝑆 ; 𝜃′𝑆 ), where CIC standards for coalition incentive compatibility.15

Suppose by way of contradiction that there exists a feasible mechanism (𝑞, 𝑡) satisfying the following three properties.

Property (𝑖), IC of agent 𝑖.
In particular, for types 𝜃𝑖 ≠ 𝜃′𝑖 where either 𝜃𝑖 or 𝜃′

𝑖
is equal to 𝜃̄𝑖, the IC constraints of type 𝜃𝑖 require

IC(𝜃𝑖;𝜃′𝑖 ) ∶
∑

𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) − ∑
𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃′𝑖 , 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) ⩾ 1 − 𝜖, (7)

where the right-hand-side expression is the change in agent 𝑖’s payoff due to the changed outcome.

Moreover, for types 𝜃𝑖 ≠ 𝜃′𝑖 where 𝜃𝑖, 𝜃′𝑖 ∈Θ𝑖∖{𝜃̄𝑖},

IC(𝜃𝑖;𝜃′𝑖 ) ∶
∑

𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) − ∑
𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃′𝑖 , 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) ⩾ 0.

Property (𝑖𝑖), CIC of coalition 𝐼∖{𝑖} (or IC if 𝑛 = 2).

For each pair of 𝜃−𝑖 ≠ 𝜃′−𝑖,

CIC(𝜃−𝑖;𝜃′−𝑖) ∶
∑

𝑗∈𝐼∖{𝑖}

∑
𝜃𝑖∈Θ𝑖

𝑡𝑗 (𝜃𝑖, 𝜃−𝑖)𝑝(𝜃𝑖|𝜃−𝑖) − ∑
𝑗∈𝐼∖{𝑖}

∑
𝜃𝑖∈Θ𝑖

𝑡𝑗 (𝜃𝑖, 𝜃′−𝑖)𝑝(𝜃𝑖|𝜃−𝑖) ⩾ 0.

Property (𝑖𝑖𝑖), CIC of coalition 𝐼 .

For each type profile 𝜃 = (𝜃̄𝑖, 𝜃−𝑖) ∈Θ∖{𝜃̄},

CIC(𝜃̄;𝜃) ∶
∑
𝑗∈𝐼

𝑡𝑗 (𝜃̄) −
∑
𝑗∈𝐼

𝑡𝑗 (𝜃) ⩾ 0;

For each type profile 𝜃 = (𝜃𝑖, 𝜃−𝑖) ∈Θ∖{𝜃̄} where 𝜃𝑖 ≠ 𝜃̄𝑖,

CIC(𝜃̄;𝜃) ∶
∑
𝑗∈𝐼

𝑡𝑗 (𝜃̄) −
∑
𝑗∈𝐼

𝑡𝑗 (𝜃) ⩾ 2 − 𝜖 + (𝑛− 1)𝑛− 2
𝑛− 1

− 𝑛 = −𝜖.

For each type profile 𝜃 = (𝜃̄𝑖, 𝜃−𝑖) ∈Θ∖{𝜃̄},

CIC(𝜃; 𝜃̄) ∶
∑
𝑗∈𝐼

𝑡𝑗 (𝜃) −
∑
𝑗∈𝐼

𝑡𝑗 (𝜃̄) ⩾ 0.

For each type profile 𝜃 = (𝜃𝑖, 𝜃−𝑖) ∈Θ∖{𝜃̄} where 𝜃𝑖 ≠ 𝜃̄𝑖,

CIC(𝜃; 𝜃̄) ∶
∑
𝑗∈𝐼

𝑡𝑗 (𝜃) −
∑
𝑗∈𝐼

𝑡𝑗 (𝜃̄) ⩾ 2 − 𝜖 + (𝑛− 1)𝑛− 2
𝑛− 1

− 𝑛 = −𝜖.

Now we scale each constraint IC(𝜃𝑖; 𝜃′𝑖 ) where 𝜃𝑖 ≠ 𝜃′𝑖 by the factor 𝑝(𝜃𝑖)𝑝(𝜃′𝑖 ). For example, after scaling, expression (7) becomes:∑
𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃′𝑖 ) −
∑

𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃′𝑖 , 𝜃−𝑖)𝑝(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃
′
𝑖 ) ⩾ (1 − 𝜖)𝑝(𝜃𝑖)𝑝(𝜃′𝑖 ).

15 This constraint essentially treats coalition 𝑆 as a “pseudo” agent with type 𝜃𝑆 . This “pseudo” agent’s utility is the sum of its members’ utility levels. The CIC(𝜃𝑆 ; 𝜃′𝑆 )
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constraint requires that type-𝜃𝑆 “pseudo” agent 𝑆 does not benefit from misreporting 𝜃′
𝑆

.
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Similarly, we scale each constraint CIC(𝜃−𝑖; 𝜃′−𝑖) where 𝜃−𝑖 ≠ 𝜃′−𝑖 by 𝑝(𝜃−𝑖)𝑝(𝜃′−𝑖), each CIC(𝜃̄; 𝜃) where 𝜃 ∈ Θ∖{𝜃̄} by |𝑝(𝜃) −
𝑝(𝜃𝑖)𝑝(𝜃−𝑖)| + 𝑝(𝜃) − 𝑝(𝜃𝑖)𝑝(𝜃−𝑖), and each CIC(𝜃; 𝜃̄) where 𝜃 ∈Θ∖{𝜃̄} by |𝑝(𝜃) − 𝑝(𝜃𝑖)𝑝(𝜃−𝑖)|.

Then aggregate these scaled constraints. We can cancel all terms containing 𝑡 on the left-hand side. We eventually have 0 ⩾
2(1 − 𝜖)𝑝(𝜃̄𝑖)(1 − 𝑝(𝜃̄𝑖)) − 𝜖

∑
𝜃−𝑖∈Θ−𝑖

∑
𝜃𝑖∈Θ𝑖∖{𝜃̄𝑖}[2|𝑝(𝜃) − 𝑝(𝜃𝑖)𝑝(𝜃−𝑖)| + 𝑝(𝜃) − 𝑝(𝜃𝑖)𝑝(𝜃−𝑖)] > 2(1 − 𝜖)𝑝(𝜃̄𝑖)(1 − 𝑝(𝜃̄𝑖)) − 3𝜖|Θ| > 0, where 

the first strict inequality uses the observation that∑
𝜃−𝑖∈Θ−𝑖

∑
𝜃𝑖∈Θ𝑖∖{𝜃̄𝑖}

[2|𝑝(𝜃) − 𝑝(𝜃𝑖)𝑝(𝜃−𝑖)|+ 𝑝(𝜃) − 𝑝(𝜃𝑖)𝑝(𝜃−𝑖)]
⩽

∑
𝜃−𝑖∈Θ−𝑖

∑
𝜃𝑖∈Θ𝑖∖{𝜃̄𝑖}

[3 |𝑝(𝜃) − 𝑝(𝜃𝑖)𝑝(𝜃−𝑖)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩽1

] ⩽ 3(|Θ𝑖|− 1)||Θ−𝑖| < 3|Θ|
and the second strict inequality uses the range of 𝜖 specified at the beginning of the proof. This leads to a contradiction. □

Proof of Proposition 1. Fix an information structure (Θ, 𝑝). Lemma 1 constructs a payoff structure and establishes that for any 
standard Bayesian mechanism (𝑞, 𝑡) that achieves FSE, there exists 𝑆 ∈ {𝐼∖{𝑛}, 𝐼} and 𝜃𝑆 ≠ 𝜃′

𝑆
∈ Θ𝑆 such that 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝜃′𝑆 ) >

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝜃𝑆 ). We now fix one mechanism (𝑞, 𝑡) that achieves FSE and one such 𝑆 for the remainder of this proof.

Among all 𝛿𝑆 ∶ Θ𝑆 → Δ(Θ𝑆 ), let 𝛿𝑆 maximize 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 ) for each 𝜃𝑆 ∈ Θ𝑆 . Hence, following 𝛿𝑆 is ex-ante more profitable 
for 𝑆 than being truthful, i.e.,∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 )𝑝(𝜃𝑆 ) >
∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 )𝑝(𝜃𝑆 ). (8)

Let (Θ𝑆 , 𝑝̂) be the information structure in the sub-environment with agents in 𝑆 only, where 𝑝̂ is the marginal distribution of 𝑝
over Θ𝑆 .

Step 1. Suppose 𝑝̂ satisfies the Convex Independence condition and the Identifiability condition (defined in Appendix A.1). Now we 
construct a feasible 𝑆-communicative manipulation.

Let 𝕋 be a compact subset of ℝ such that 𝑡𝑖(𝜃) ∈ 𝕋 for all 𝑖 ∈ 𝐼 and 𝜃 ∈ Θ. For each 𝑖 ∈ 𝑆 , define a utility function 𝑢̂𝑖 over 
type space Θ𝑆 and an extended set of feasible outcomes 𝐴̃ ≡ Δ(𝐴 × 𝕋 𝑛) as follows: for each 𝜃𝑆 ∈ Θ𝑆 and pair (𝑎̄, ̄𝑡) ∈ 𝐴 × 𝕋 𝑛, 
𝑢̂𝑖((𝑎̄, ̄𝑡), 𝜃𝑆 ) ≡

∑
𝜃−𝑆∈Θ−𝑆

[𝑢𝑖(𝑎̄, (𝜃𝑆 , 𝜃−𝑆 )) + 𝑡𝑖]𝑝(𝜃−𝑆 |𝜃𝑆 ), and then extend the definition of 𝑢̂𝑖 to Δ(𝐴 × 𝕋 𝑛) by the standard expected 
utility.

Define an allocation rule 𝑞 ∶ Θ𝑆 → 𝐴̃ such that 𝑞(𝜃𝑆 ) is a lottery that is equal to (𝑞(𝜃′
𝑆
, 𝜃−𝑆 ), 𝑡(𝜃′𝑆 , 𝜃−𝑆 )) with probability 

𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 )𝑝(𝜃−𝑆 |𝜃𝑆 ) for each 𝜃𝑆 , 𝜃′𝑆 ∈ Θ𝑆 and 𝜃−𝑆 ∈ 𝜃−𝑆 . FSE requires that the right-hand side of expression (8) is equal to 0. 
Hence, (8) implies that 

∑
𝑖∈𝑆

∑
𝜃𝑆∈Θ𝑆 𝑢̂𝑖(𝑞(𝜃𝑆 ), 𝜃𝑆 )𝑝̂(𝜃𝑆 ) =

∑
𝜃𝑆∈Θ𝑆 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿

𝑆 )𝑝(𝜃𝑆 ) > 0. Then by Kosenok and Severinov (2008), 
in the sub-environment, there exists an ex-post budget balanced transfer rule, 𝜓𝑆 ∶ Θ𝑆 → ℝ|𝑆|, such that (𝑞, 𝜓𝑆 ) is interim IR and 
IC. Notice that for each 𝑖 ∈ 𝑆 , 𝜃𝑖, 𝜃̂𝑖 ∈Θ𝑖,∑

𝜃𝑆∖{𝑖}∈Θ𝑆∖{𝑖}

[𝑢̂𝑖(𝑞(𝜃̂𝑖, 𝜃𝑆∖{𝑖}), (𝜃𝑖, 𝜃𝑆∖{𝑖})) +𝜓𝑆𝑖 (𝜃̂𝑖, 𝜃𝑆∖{𝑖})]𝑝̂(𝜃𝑆∖{𝑖}|𝜃𝑖) = 𝑉𝑖[𝑞𝛿𝑆 , 𝑡𝛿𝑆 +𝜓𝑆 ](𝜃𝑖, 𝜃̂𝑖).

The interim IR and IC of (𝑞, 𝜓𝑆 ) in the sub-environment imply that the 𝑆-communicative manipulation (𝑞𝛿𝑆 , 𝑡𝛿𝑆 +𝜓𝑆 ) in the original 
environment satisfies 𝑆-IR and 𝑆-IC, and thus, is 𝑆-feasible.

Step 2. Show that (𝑞, 𝑡) does not satisfy RCP.

Since 𝑞 is efficient, (8) implies that the 𝑆-communicative manipulation either decreases the ex-ante payoff of the MD, or hurts at 
least one agent out of 𝑆 . In the latter case, the 𝑆-communicative manipulation leads to an infeasible mechanism. In either case, (𝑞, 𝑡)
does not satisfy RCP with respect to 𝑆 , and thus not RCP.

Step 3. Establish the conclusion.

Recall that we imposed that 𝑝̂ satisfies the Convex Independence condition and the Identifiability condition. In the environment 
(Θ𝑆 , 𝑝̂), when |Θ𝑖| ⩽ |Θ𝑆∖{𝑖}| for all 𝑖 ∈ 𝑆 , almost every prior 𝑝̂ ∈Δ(Θ) satisfies the Convex Independence condition. By Kosenok and 
Severinov (2008), when |𝑆| = 3 and |Θ𝑆 | ⩾ 12 (i.e., |𝑆| > 3 or |𝑆| = 3 but there exists an agent with at least three types), almost 
every prior 𝑝̂ ∈ Δ(Θ𝑆 ) satisfies the Identifiability condition. Notice that 𝑆 ∈ {𝐼∖{𝑛}, 𝐼}. Hence, under the dimensional restrictions 
on the type space stated in Proposition 1, for almost all 𝑝 ∈Δ(Θ), the 𝑝̂ satisfies these conditions in the sub-environment, irrespective 
of whether 𝑆 = 𝐼∖{𝑛} or 𝑆 = 𝐼 . □

A.3. Proof of Proposition 2

Lemma 5. Suppose the BDP property holds for the prior 𝑝. Let (𝑞, 𝑇 ) be an ambiguous mechanism that extracts the full surplus. If there exists 
𝑆 ∈ 2𝐼∖{∅} with |𝑆| ⩾ 2 and 𝛿𝑆 such that 

∑
𝜃𝑆∈Θ𝑆 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿

𝑆 )𝑝(𝜃𝑆 ) > 0 for all 𝑡 ∈ 𝑇 , then (𝑞, 𝑇 ) does not satisfy RCP*.
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Proof. Step 1. For each 𝑡 ∈ 𝑇 , show that there exists 𝜁𝑡 ≡ (𝜁𝑡
𝑖
∶ Θ𝑆 →ℝ)𝑖∈𝑆 such that
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(a)
∑
𝑖∈𝑆 𝜁

𝑡
𝑖
(𝜃𝑆 ) = 0 for all 𝜃𝑆 ∈Θ𝑆 ;

(b)
∑
𝜃𝑆∖{𝑖}∈Θ𝑆∖{𝑖} 𝜁

𝑡
𝑖
(𝜃𝑖, 𝜃𝑆∖{𝑖})𝑝(𝜃𝑆∖{𝑖}|𝜃𝑖) =𝑤𝑖(𝑡, 𝜃𝑖) for all 𝑖 ∈ 𝑆 and 𝜃𝑖 ∈Θ𝑖, where

𝑤𝑖(𝑡, 𝜃𝑖) ≡− 𝑉𝑖[𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 ](𝜃𝑖, 𝜃𝑖) +
1|𝑆| ∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 )𝑝(𝜃𝑆 ). (9)

As 
∑
𝑖∈𝑆

∑
𝜃𝑖∈Θ𝑖 𝑤𝑖(𝑡, 𝜃𝑖)𝑝(𝜃𝑖) = 0, we apply Lemma A3 of Kosenok and Severinov (2008) in a sub-environment with agents in 𝑆

and type space Θ𝑆 to establish the existence of 𝜁𝑡.

Step 2. Construct an ambiguous 𝑆-side contract (𝛿𝑆 , Ψ𝑆 ).
Since the BDP property holds, for each 𝑗 ∈ 𝑆 and 𝜃̄𝑗 ∈ Θ𝑗 , there exists a transfer rule 𝜉𝜃̄𝑗 ≡ (𝜉𝜃̄𝑗

𝑖
∶ Θ → ℝ)𝑖∈𝑆 , satisfying the 

conditions in Lemma 4. Fix any 𝜆 ∈ℝ+ that is weakly larger than

max
𝑡∈𝑇 ,𝑗∈𝑆,𝜃̄𝑗∈Θ𝑗 ,
𝜃̂𝑗∈Θ𝑗∖{𝜃̄𝑗}

𝑉𝑗 [𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 ](𝜃̄𝑗 , 𝜎̄𝑗 ) − 𝑉𝑗 [𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 ](𝜃̄𝑗 , 𝜃̂𝑗 ) +𝑤𝑗 (𝑡, 𝜃̄𝑗 ) −
∑

𝜃𝑆∖{𝑗}∈Θ𝑆∖{𝑗}

𝜁𝑡𝑗 (𝜃̂𝑗 , 𝜃𝑆∖{𝑗})𝑝(𝜃𝑆∖{𝑗}|𝜃̄𝑗 )
∑

𝜃−𝑗∈Θ−𝑗

𝜉
𝜃̄𝑗
𝑗
(𝜃̂𝑗 , 𝜃−𝑗 )𝑝(𝜃−𝑗 |𝜃̄𝑗 ) .

For each 𝑗 ∈ 𝑆 and 𝜃̄𝑗 ∈ Θ𝑖, define 𝜓𝜃̄𝑗 ≡ (𝜓𝜃̄𝑗
𝑖

∶ 𝑇 × Θ → ℝ)𝑖∈𝑆 by 𝜓𝜃̄𝑗
𝑖
(𝑡, 𝜃) ≡ 𝜁𝑡

𝑖
(𝜃𝑆 ) + 𝜆𝜉

𝜃̄𝑗
𝑖
(𝜃) for all 𝑡 ∈ 𝑇 , 𝜃 ∈ Θ, and 𝑖 ∈ 𝑆 . 

Define Ψ𝑆 ≡ {𝜓𝜃̄𝑗 |𝑗 ∈ 𝑆, 𝜃̄𝑗 ∈ Θ𝑗}, where each transfer rule is ex-post budget balanced within 𝑆 due to (a) from Step 1 and (𝑖) in 
Lemma 4.

Step 3. Verify the 𝑆-feasibility of 𝑆-communicative manipulation (𝑞𝛿𝑆 , 𝑇 𝛿𝑆 +Ψ𝑆 ).
Fix any 𝑖 ∈ 𝑆 and 𝜃𝑖 ∈Θ𝑖 throughout this step.

By (9) and the supposition of this lemma, for each 𝑡 ∈ 𝑇 ,

𝑉𝑖[𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 ](𝜃𝑖, 𝜃𝑖) +𝑤𝑖(𝑡, 𝜃𝑖) =
1|𝑆| ∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿𝑆 )𝑝(𝜃𝑆 ) > 0. (10)

Notice that for each 𝜓𝑆 ∈ Ψ𝑆 , there exists 𝑗 ∈ 𝑆 and 𝜃̄𝑗 ∈ Θ𝑗 such that 𝜓𝑆
𝑖
(𝑡, (𝜃𝑖, 𝜃−𝑖)) = 𝜁𝑡

𝑖
(𝜃𝑖, 𝜃𝑆∖{𝑖}) + 𝜆𝜉

𝜃̄𝑗
𝑖
(𝜃𝑖, 𝜃−𝑖)

for all 𝜃−𝑖 ∈ Θ−𝑖 and 𝑡 ∈ 𝑇 . For convenience, for each 𝑡 ∈ 𝑇 , we denote 𝑉𝑖[𝑞𝛿
𝑆
, 𝑡𝛿𝑆 + 𝜓𝑆 (𝑡, ⋅)](𝜃𝑖, 𝜃𝑖) ≡ 𝑉𝑖[𝑞𝛿

𝑆
, 𝑡𝛿𝑆 ](𝜃𝑖, 𝜃𝑖) +∑

𝜃−𝑖∈Θ−𝑖
𝜓𝑆
𝑖
(𝑡, 𝜃𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖). Hence, for 𝜓𝑆 ∈Ψ𝑆 such that 𝜓𝑆 (𝑡, 𝜃) = 𝜁𝑡(𝜃𝑆 ) + 𝜆𝜉𝜃̄𝑗 (𝜃) for all 𝑡 ∈ 𝑇 and 𝜃 ∈Θ,

min
𝑡∈𝑇

{𝑉𝑖[𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 +𝜓𝑆 (𝑡, ⋅)](𝜃𝑖, 𝜃𝑖)}

=min
𝑡∈𝑇

{𝑉𝑖[𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 ](𝜃𝑖, 𝜃𝑖) +
∑

𝜃−𝑖∈Θ−𝑖

[𝜁𝑡𝑖 (𝜃𝑖, 𝜃𝑆∖{𝑖}) + 𝜆𝜉
𝜃̄𝑗
𝑖
(𝜃𝑖, 𝜃−𝑖)]𝑝(𝜃−𝑖|𝜃𝑖)}

=min
𝑡∈𝑇

{ 𝑉𝑖[𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 ](𝜃𝑖, 𝜃𝑖) +𝑤𝑖(𝑡, 𝜃𝑖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

independent of 𝜓𝑆 ∈Ψ𝑆 and positive by (10)

} = 𝑉𝑖[𝑞𝛿
𝑆
, 𝑇 𝛿

𝑆 +Ψ𝑆 ](𝜃𝑖, 𝜎̄𝑖) > 0. (11)

Notice that the second equality follows from Condition (b) of 𝜁𝑡 established from Step 1 and Condition (𝑖𝑖) of 𝜉𝜃𝑗 stated in Lemma 4. 
We have established the 𝑆-IR constraint for 𝜃𝑖.

On the other hand, for each 𝜎𝑖 ∶ Θ𝑖 →Δ(Θ𝑖) such that 𝜎𝑖 ≠ 𝜎̄𝑖, since 𝜓𝜃𝑖 ∈Ψ𝑆 ,

𝑉𝑖[𝑞𝛿
𝑆
, 𝑇 𝛿

𝑆 +Ψ𝑆 ](𝜃𝑖, 𝜎𝑖)

⩽min
𝑡∈𝑇

{
∑
𝜃̂𝑖∈Θ𝑖

[𝑉𝑖[𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 ](𝜃𝑖, 𝜃̂𝑖) +
∑

𝜃−𝑖∈Θ−𝑖

[𝜁𝑡𝑖 (𝜃̂𝑖, 𝜃𝑆∖{𝑖}) + 𝜆𝜉
𝜃𝑖
𝑖
(𝜃̂𝑖, 𝜃−𝑖)]𝑝(𝜃−𝑖|𝜃𝑖)]𝜎𝑖[𝜃𝑖](𝜃̂𝑖)}

⩽min
𝑡∈𝑇

{𝑉𝑖[𝑞𝛿
𝑆
, 𝑡𝛿

𝑆 ](𝜃𝑖, 𝜃𝑖) +𝑤𝑖(𝑡, 𝜃𝑖)}
(11)
= 𝑉𝑖[𝑞𝛿

𝑆
, 𝑇 𝛿

𝑆 +Ψ𝑆 ](𝜃𝑖, 𝜎̄𝑖),

where the second inequality follows from the choice of 𝜆. To this end, we have established the 𝑆-IC constraint for 𝜃𝑖 .
Similarly, we can verify the 𝑆-IR and 𝑆-IC constraints for each member in 𝑆 and each type. Thus, (𝑞𝛿𝑆 , 𝑇 𝛿𝑆 +Ψ𝑆 ) is an 𝑆-feasible 

ambiguous 𝑆-communicative manipulation.

Step 4. Show that (𝑞, 𝑇 ) does not satisfy RCP*.

Fix any 𝑡 ∈ 𝑇 , since 
∑
𝜃𝑆∈Θ𝑆 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿

𝑆 )𝑝(𝜃𝑆 ) > 0, the efficiency of 𝑞 implies that in this ambiguous 𝑆-communicative manip-

ulation, either the MD does not extract the full surplus or the IR constraint of an agent out of 𝑆 is violated. Hence, (𝑞, 𝑇 ) does not 
278

satisfy RCP*. □
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Lemma 6. If the CBDP property fails, then there exists a payoff structure under which there does not exist an FSE ambiguous mechanism 
that satisfies the RCP* condition.

Proof. Step 1. Discuss the case when the BDP property doesn’t not hold for the prior 𝑝.
Suppose there exists 𝑖 ∈ 𝐼 and types 𝜃̄𝑖 ≠ 𝜃̂𝑖 such that 𝑝(⋅|𝜃̄𝑖) = 𝑝(⋅|𝜃̂𝑖). Consider the payoff structure in the proof of Proposition 1

with the modification that 𝜖 ∈ (0, 1) and the same efficient allocation rule 𝑞. If there exists an FSE ambiguous mechanism (𝑞, 𝑇 ), then 
the following two IC constraints must hold:

IC(𝜃̄𝑖; 𝜃̂𝑖) ∶ min
𝑡∈𝑇

{1 +
∑

𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃̄𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃̄𝑖)} ⩾min
𝑡∈𝑇

{2 − 𝜖 +
∑

𝜃−𝑆∈Θ−𝑖

𝑡𝑖(𝜃̂𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃̄𝑖)},
IC(𝜃̂𝑖; 𝜃̄𝑖) ∶ min

𝑡∈𝑇
{1 +

∑
𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃̂𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃̂𝑖)} ⩾min
𝑡∈𝑇

{2 − 𝜖 +
∑

𝜃−𝑖∈Θ−𝑖

𝑡𝑖(𝜃̄𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃̂𝑖)}.
In these inequalities, the terms independent of 𝑡 can be moved out of the minimization operators.

We can sum up the two IC constraints, cancel all terms containing 𝑡, and obtain 2 ⩾ 4 − 2𝜖. This contradicts the restriction that 
𝜖 ∈ (0, 1).

Step 2. Discuss the case when the BDP property holds but the CBDP property doesn’t not hold for prior 𝑝.
Suppose for some non-singleton 𝑆 ∈ 2𝐼∖{∅, 𝐼}, there are two type profiles 𝜃1

𝑆
≠ 𝜃2

𝑆
with 𝑝(𝜃1

𝑆
) ⩽ 𝑝(𝜃2

𝑆
) such that 𝑝(⋅|𝜃1

𝑆
) = 𝑝(⋅|𝜃2

𝑆
). 

Denote an agent in 𝑆 whose types are different under 𝜃1
𝑆

and 𝜃2
𝑆

by 𝑖, and label his component in 𝜃1
𝑆

by 𝜃̄𝑖. Consider the payoff 
structure in the proof of Proposition 1 except that 𝜖 ∈ (0, 1

𝑛−1 ).
Let 𝛿𝑆 be the truthful joint reporting strategy except that (𝑖) 𝛿𝑆 [𝜃1

𝑆
](𝜃2

𝑆
) = 1, (𝑖𝑖) 𝛿𝑆 [𝜃2

𝑆
](𝜃1

𝑆
) = 𝑝(𝜃1

𝑆
)∕𝑝(𝜃2

𝑆
) and 𝛿𝑆 [𝜃2

𝑆
](𝜃2

𝑆
) =

1 − 𝑝(𝜃1
𝑆
)∕𝑝(𝜃2

𝑆
). It is easy to see that

𝑝(𝜃) =
∑

𝜃̄𝑆∈Θ𝑆

𝑝(𝜃̄𝑆 , 𝜃−𝑆 )𝛿𝑆 [𝜃̄𝑆 ](𝜃𝑆 ),∀𝜃 ∈Θ.

For any FSE ambiguous mechanism (𝑞, 𝑇 ), it must be the case that∑
𝜃′
𝑆
∈Θ𝑆

∑
𝜃−𝑆∈Θ−𝑆

∑
𝑖∈𝑆

𝑡𝑖(𝜃′𝑆 , 𝜃−𝑆 )𝑝(𝜃
′
𝑆
, 𝜃−𝑆 ) = −|𝑆|, ∀𝑡 ∈ 𝑇 .

Hence, by the observation established from the previous paragraph,∑
𝜃′
𝑆
∈Θ𝑆

∑
𝜃−𝑆∈Θ−𝑆

∑
𝑖∈𝑆

𝑡𝑖(𝜃′𝑆 , 𝜃−𝑆 )
∑

𝜃𝑆∈Θ𝑆

𝑝(𝜃𝑆 , 𝜃−𝑆 )𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ) = −|𝑆|,∀𝑡 ∈ 𝑇 . (12)

Notice that for each 𝑡 ∈ 𝑇 , 
∑
𝜃𝑆∈Θ𝑆 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿

𝑆 )𝑝(𝜃𝑆 ) can be equivalently written as∑
𝜃𝑆∈Θ𝑆

∑
𝑖∈𝑆

∑
𝜃′
𝑆
∈Θ𝑆

∑
𝜃−𝑆∈Θ−𝑆

[𝑢𝑖
(
𝑞(𝜃′

𝑆
, 𝜃−𝑆 ), (𝜃𝑆 , 𝜃−𝑆 )

)
+ 𝑡𝑖(𝜃′𝑆 , 𝜃−𝑆 )]𝑝(𝜃𝑆 , 𝜃−𝑆 )𝛿

𝑆 [𝜃𝑆 ](𝜃′𝑆 )

(12)
=

∑
𝜃𝑆∈Θ𝑆

∑
𝑖∈𝑆

∑
𝜃′
𝑆
∈Θ𝑆

∑
𝜃−𝑆∈Θ−𝑆

𝑢𝑖
(
𝑞(𝜃′

𝑆
, 𝜃−𝑆 ), (𝜃𝑆 , 𝜃−𝑆 )

)
𝑝(𝜃𝑆 , 𝜃−𝑆 )𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ) − |𝑆| > 0.

The inequality holds, because given the payoff structure constructed in Step 2, the range of 𝜖, the fact that |𝑆| < 𝑛, and the definition 
of 𝑞, for all 𝜃𝑆 , 𝜃′𝑆 ∈Θ𝑆 and 𝜃−𝑆 ∈Θ−𝑆 ,∑

𝑖∈𝑆
𝑢𝑖
(
𝑞(𝜃′

𝑆
, 𝜃−𝑆 ), (𝜃𝑆 , 𝜃−𝑆 )

)
⩾ |𝑆|

and the strict inequality holds for some 𝜃𝑆 , 𝜃′
𝑆

, and 𝜃−𝑆 such that 𝑝(𝜃𝑆, 𝜃−𝑆 )𝛿𝑆 [𝜃𝑆 ](𝜃′𝑆 ) > 0 (since there is a misreport between type 
𝜃̄𝑖 and another type in Θ𝑖∖{𝜃̄𝑖}). As a result, 

∑
𝜃𝑆∈Θ𝑆 𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝛿

𝑆 )𝑝(𝜃𝑆 ) > 0 for all 𝑡 ∈ 𝑇 . By Lemma 5, (𝑞, 𝑇 ) does not satisfy RCP*.

Hence, there does not exist any FSE ambiguous mechanism satisfying RCP*. □

Proof of Lemma 3. The truthful joint reporting strategy is 𝛿𝑆 ∶ Θ𝑆 → Δ(Θ𝑆 ). Denote all non-truthful deterministic joint reporting 
strategies by 𝛿𝑆1, 𝛿𝑆2, ..., 𝛿𝑆𝑘̄, where 𝑘̄ is a positive integer. For each 𝛿𝑆 ∶ Θ𝑆 →Δ(Θ𝑆 ), denote 𝑝[𝛿𝑆 ] ≡

∑
𝜃̄𝑆 ,𝜃̂𝑆∈Θ𝑆

𝛿𝑆 [𝜃̄𝑆 ](𝜃̂𝑆 )𝑝𝑆𝜃̄𝑆 𝜃̂𝑆
∈

ℝ𝑛|Θ|+ .

Step 1. Show that there do not exist weights 𝛽1 , ..., 𝛽𝑘̄ ⩾ 0 such that 𝛽1 + ... + 𝛽𝑘̄ = 1, for which
279

𝑝[𝛿𝑆 ] = 𝛽1𝑝[𝛿𝑆1] + ...+ 𝛽𝑘̄𝑝[𝛿𝑆𝑘̄]. (13)
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Suppose by way of contradiction that there exist weights 𝛽1, ..., 𝛽𝑘̄ such that the above equation holds. We define 𝛿𝑆 ≡ 𝛽1𝛿
𝑆1 +

... + 𝛽𝑘̄𝛿𝑆𝑘̄. By linearity of 𝑝[𝛿𝑆 ] in 𝛿𝑆 , definition of 𝛿𝑆 , and expression (13), it must be true that 𝑝[𝛿𝑆 ] = 𝑝[𝛿𝑆 ]. According to the 
definition of the two vectors, we have 

∑
𝜃𝑆∈Θ𝑆 𝑝

𝑆
𝜃𝑆𝜃𝑆

=
∑
𝜃̄𝑆 ,𝜃𝑆∈Θ𝑆 𝛿

𝑆 [𝜃̄𝑆 ](𝜃𝑆 )𝑝𝑆𝜃̄𝑆𝜃𝑆
∈ℝ𝑛|Θ|+ . As a result,

𝑝(𝜃𝑆 )𝑝(𝜃−𝑆 |𝜃𝑆 ) = ∑
𝜃̄𝑆∈Θ𝑆

𝛿𝑆 [𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 )𝑝(𝜃−𝑆 |𝜃̄𝑆 ),∀𝜃𝑆 ∈Θ𝑆 , 𝜃−𝑆 ∈Θ−𝑆 .

This implies that

𝑝(⋅|𝜃𝑆 ) = ∑
𝜃̄𝑆∈Θ𝑆

[𝑝(𝜃̄𝑆 )
𝑝(𝜃𝑆 )

𝛿𝑆 [𝜃̄𝑆 ](𝜃𝑆 )
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
⩾0

𝑝(⋅|𝜃̄𝑆 ),∀𝜃𝑆 ∈Θ𝑆 . (14)

Since the 𝑆-BDP property holds, there is a one-to-one correspondence between elements of Θ𝑆 and {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ𝑆}. Let 
Θ1
𝑆
⊆ Θ𝑆 be the set such that {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ1

𝑆
} is the set of all extreme points of {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ𝑆}. Recursively, for 𝑚 = 2, ..., 𝑚̄, 

let Θ𝑚
𝑆
⊆Θ𝑆∖(Θ1

𝑆
∪ ... ∪Θ𝑚−1

𝑆
) be the set such that {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ𝑚

𝑆
} is the set of all extreme points of {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ𝑆∖(Θ1

𝑆
∪ ... ∪

Θ𝑚−1
𝑆

)}. Since Θ𝑆 is finite, it takes 𝑚̄ <∞ rounds, such that Θ1
𝑆
∪ ... ∪Θ𝑚̄

𝑆
=Θ𝑆 . Then {Θ1

𝑆
, Θ2

𝑆
, ..., Θ𝑚̄

𝑆
} is a finite partition of Θ𝑆 .

We claim that 𝛿𝑆 [𝜃𝑆 ](𝜃𝑆 ) = 1 for all 𝜃𝑆 ∈ Θ1
𝑆

. To see this, fix any 𝜃𝑆 ∈ Θ1
𝑆

. Since {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ1
𝑆
} is the set of all ex-

treme points of {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ𝑆}, by expression (14), 𝑝(𝜃̄𝑆 )
𝑝(𝜃𝑆 )

𝛿𝑆 [𝜃̄𝑆 ](𝜃𝑆 ) = 0, and thus, 𝛿𝑆 [𝜃̄𝑆 ](𝜃𝑆 ) = 0, for any 𝜃̄𝑆 ∈ Θ𝑆∖{𝜃𝑆}, and 
𝑝(𝜃𝑆 )
𝑝(𝜃𝑆 )

𝛿𝑆 [𝜃𝑆 ](𝜃𝑆 ) = 𝛿𝑆 [𝜃𝑆 ](𝜃𝑆 ) = 1.

We further claim that 𝛿𝑆 [𝜃𝑆 ](𝜃𝑆 ) = 1 for all 𝜃𝑆 ∈ Θ2
𝑆

. To see this, fix any 𝜃𝑆 ∈ Θ2
𝑆

. We have shown in the previous claim that 
𝛿𝑆 [𝜃̄𝑆 ](𝜃𝑆 ) = 0 for all 𝜃̄𝑆 ∈ Θ1

𝑆
. Furthermore, since {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ2

𝑆
} is the set of all extreme points of {𝑝(⋅|𝜃𝑆 )|𝜃𝑆 ∈ Θ𝑆∖Θ1

𝑆
}, by 

expression (14), 𝑝(𝜃̄𝑆 )
𝑝(𝜃𝑆 )

𝛿𝑆 [𝜃̄𝑆 ](𝜃𝑆 ) = 0, and thus, 𝛿𝑆 [𝜃̄𝑆 ](𝜃𝑆 ) = 0, for any 𝜃̄𝑆 ∈ (Θ𝑆∖Θ1
𝑆
)∖{𝜃𝑆}, and 𝑝(𝜃𝑆 )

𝑝(𝜃𝑆 )
𝛿𝑆 [𝜃𝑆 ](𝜃𝑆 ) = 𝛿𝑆 [𝜃𝑆 ](𝜃𝑆 ) = 1.

Recursively, we can show that 𝛿𝑆 [𝜃𝑆 ](𝜃𝑆 ) = 1 for all 𝜃𝑆 ∈ Θ𝑆 . By the definition of 𝛿𝑆 , this further implies that for every 𝑘 ∈
{1, ..., ̄𝑘} with 𝛽𝑘 > 0, 𝛿𝑆𝑘 imposes probability 1 on truthful revealing, a contradiction with the supposition that all 𝛿𝑆𝑘 are non-

truthful deterministic joint reporting strategies.

Step 2. Prove that there exists an ex-post budget balanced transfer rule 𝜙𝑆 ∶ Θ →ℝ𝑛 such that

(𝑖)
∑
𝜃−𝑖∈Θ−𝑖

𝜙𝑆
𝑖
(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) = 0 for all 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖;

(𝑖𝑖)
∑
𝜃̂𝑆∈Θ𝑆

∑
𝜃̄𝑆∈Θ𝑆

∑
𝑖∈𝑆

∑
𝜃−𝑆∈Θ−𝑆

𝜙𝑆
𝑖
(𝜃̂𝑆 , 𝜃−𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 )𝛿𝑆𝑘[𝜃̄𝑆 ](𝜃̂𝑆 ) < 0 for 𝑘 = 1, ..., ̄𝑘.

Suppose by way of contradiction that there does not exist an ex-post budget balanced transfer rule 𝜙𝑆 satisfying Conditions (𝑖)
and (𝑖𝑖) above.

With the vectors defined in Appendix A.1, we construct matrices 𝐵 ∈ℝ𝑘̄×(𝑛|Θ|) and 𝐷 ∈ℝ(
∑
𝑖∈𝐼 |Θ𝑖|+|Θ|)×(𝑛|Θ|) respectively. Matrix 

𝐵 is obtained by vertically stacking up 𝑘̄ row vectors 
∑
𝜃̄𝑆 ,𝜃̂𝑆∈Θ𝑆

𝛿𝑆𝑘[𝜃̄𝑆 ](𝜃̂𝑆 )𝑝𝑆𝜃̄𝑆 𝜃̂𝑆
∈ℝ𝑛|Θ|+ for all 𝑘 = 1, ..., ̄𝑘. Construct matrix 𝐷 by 

stacking up 
∑
𝑖∈𝐼 |Θ𝑖| row vectors 𝑝{𝑖}

𝜃𝑖𝜃𝑖
∈ℝ𝑛|Θ|+ for all 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖 as well as |Θ| row vectors 𝑒𝐼

𝜃
∈ℝ𝑛|Θ|+ for all 𝜃 ∈Θ.

Suppose by way of contradiction that there is no transfer rule 𝜙𝑆 satisfying requirements stated in Step 2. Then we can claim that 
𝐵𝑥 < 0𝑘̄×1, 𝐷𝑥 = 0(

∑
𝑖∈𝐼 |Θ𝑖|+|Θ|)×1 has no column vector solution 𝑥 ∈ ℝ𝑛|Θ|. By Theorem 1, there are column vectors 𝑦1 ∈ ℝ𝑘̄+∖{0}

and 𝑦2 ∈ℝ
∑
𝑖∈𝐼 |Θ𝑖|+|Θ|, such that 𝐵′𝑦1 +𝐷′𝑦2 = 0(𝑛|Θ|)×1, or equivalently −𝑦′2𝐷 = 𝑦′1𝐵 where both sides are row vectors in ℝ𝑛|Θ|. As 

a result, there exists a profile of numbers (𝑎𝜃𝑖 ∈ℝ)𝜃𝑖∈Θ𝑖 ,𝑖∈𝐼 , a profile of numbers (𝑏𝜃 ∈ℝ)𝜃∈Θ, and a profile of nonnegative numbers 
(𝑐𝑘 ∈ℝ+)𝑘=1,...,𝑘̄ with at least one 𝑐𝑘 > 0, such that∑

𝑖∈𝐼

∑
𝜃𝑖∈Θ𝑖

𝑎𝜃𝑖 𝑝
{𝑖}
𝜃𝑖𝜃𝑖

+
∑
𝜃∈Θ

𝑏𝜃𝑒
𝐼
𝜃
=

∑
𝜃̄𝑆 ,𝜃̂𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘𝛿
𝑆𝑘[𝜃̄𝑆 ](𝜃̂𝑆 )𝑝𝑆𝜃̄𝑆 𝜃̂𝑆

. (15)

By definitions of vectors in Appendix A.1, 
∑
𝜃∈Θ 𝑝(𝜃)𝑒𝐼𝜃 =

∑
𝑖∈𝐼

∑
𝜃𝑖∈Θ𝑖 𝑝

{𝑖}
𝜃𝑖𝜃𝑖

. Multiply this equation by a large 𝜆 ∈ ℝ+, such that 
𝑎̃𝜃𝑖 ≡ 𝜆 − 𝑎𝜃𝑖 ∈ℝ++ for all 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖 and 𝑏̃𝜃 ≡ 𝜆𝑝(𝜃) + 𝑏𝜃 ∈ℝ+ for all 𝜃 ∈Θ, and add the scaled equation with (15). We have∑

𝜃∈Θ
𝑏̃𝜃𝑒

𝐼
𝜃
=
∑
𝑖∈𝐼

∑
𝜃𝑖∈Θ𝑖

𝑎̃𝜃𝑖 𝑝
{𝑖}
𝜃𝑖𝜃𝑖

+
∑

𝜃̄𝑆 ,𝜃̂𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘𝛿
𝑆𝑘[𝜃̄𝑆 ](𝜃̂𝑆 )𝑝𝑆𝜃̄𝑆 𝜃̂𝑆

. (16)

Recall that |𝑆| ⩾ 2. We claim that

𝑎̃𝜃𝑖 = 𝑎̃𝜃𝑗 , ∀𝑖, 𝑗 ∈ 𝑆with 𝑖 ≠ 𝑗, 𝜃𝑖 ∈Θ𝑖, and 𝜃𝑗 ∈Θ𝑗 . (17)

To see this, fix any 𝜃 = (𝜃𝑆 , 𝜃−𝑆 ) ∈Θ, and 𝑖, 𝑗 ∈ 𝑆 with 𝑖 ≠ 𝑗 for now. Each side of (16) is a row vector in ℝ𝑛|Θ|, and each dimension 
corresponds to an agent and a type profile. On each side of (16), by focusing on the dimensions corresponding to (𝑖, 𝜃) and (𝑗, 𝜃), we 
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𝑏̃𝜃 =𝑎̃𝜃𝑖 𝑝(𝜃) +
∑

𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘𝛿
𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 )

=𝑎̃𝜃𝑗 𝑝(𝜃) +
∑

𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘𝛿
𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 ).

The full support assumption of 𝑝 implies that 𝑎̃𝜃𝑖 = 𝑎̃𝜃𝑗 .
We further claim that

𝑎̃𝜃𝑖 = 𝑎̃𝜃̂𝑖 , ∀𝑖 ∈ 𝑆 and 𝜃𝑖, 𝜃̂𝑖 ∈Θ𝑖. (18)

To see this, fix any two different agents 𝑖, 𝑗 ∈ 𝑆 , two types of one agent 𝜃𝑖 ≠ 𝜃̂𝑖, and a type of the other agent 𝜃𝑗 ∈ Θ𝑗 for now. 
Expression (17) implies that 𝑎̃𝜃𝑖 = 𝑎̃𝜃𝑗 and 𝑎̃𝜃̂𝑖 = 𝑎̃𝜃𝑗 . As a result, 𝑎̃𝜃𝑖 = 𝑎̃𝜃̂𝑖 .

Expressions (17) and (18) jointly imply that there exists 𝜅 ∈ℝ++ such that 𝜅 = 𝑎̃𝜃𝑖 for all 𝑖 ∈ 𝑆 and 𝜃𝑖 ∈Θ𝑖.
Fix any 𝑗 ∉ 𝑆 , we further claim that there exists 𝜅′ ∈ ℝ++ such that 𝜅′ = 𝑎̃𝜃𝑗 for all 𝜃𝑗 ∈ Θ𝑗 . To see this, we assume by way 

of contradiction that there exist two types 𝜃𝑗 ≠ 𝜃′𝑗 such that 𝑎̃𝜃𝑗 ≠ 𝑎̃𝜃′𝑗 . Assume without loss of generality that 𝑎̃𝜃𝑗 > 𝑎̃𝜃′𝑗 . We fix an 
agent 𝑖 ∈ 𝑆 and two type profiles 𝜃−𝑆 ≠ 𝜃′−𝑆 such that 𝜃𝑗 is a component of 𝜃−𝑆 and 𝜃′

𝑗
is a component of 𝜃′−𝑆 . Moreover, we fix a 

type profile 𝜃𝑆 ∈ Θ𝑆 that attains the maximum in this set { 𝑝(𝜃𝑆 ,𝜃−𝑆 )
𝑝(𝜃𝑆 ,𝜃′−𝑆 )

|𝜃𝑆 ∈ Θ𝑆}. On each side of (16), by focusing on the dimensions 
corresponding to (𝑖, (𝜃𝑆 , 𝜃−𝑆 )), and (𝑗, (𝜃𝑆 , 𝜃−𝑆 )), we have

𝑏̃(𝜃𝑆 ,𝜃−𝑆 ) = 𝑎̃𝜃𝑖 𝑝(𝜃𝑆 , 𝜃−𝑆 ) +
∑

𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘𝛿
𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 ) = 𝑎̃𝜃𝑗 𝑝(𝜃𝑆 , 𝜃−𝑆 ). (19)

Similarly, by focusing on the dimensions corresponding to (𝑖, (𝜃𝑆 , 𝜃′−𝑆 )) and (𝑗, (𝜃𝑆 , 𝜃′−𝑆 )), we have

𝑏̃(𝜃𝑆 ,𝜃′−𝑆 )
= 𝑎̃𝜃𝑖 𝑝(𝜃𝑆 , 𝜃

′
−𝑆 ) +

∑
𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘𝛿
𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃′−𝑆 ) = 𝑎̃𝜃′𝑗 𝑝(𝜃𝑆 , 𝜃

′
−𝑆 ).

Therefore,

𝑎̃𝜃𝑗 𝑝(𝜃𝑆 , 𝜃−𝑆 )

𝑎̃𝜃′
𝑗
𝑝(𝜃𝑆 , 𝜃′−𝑆 )

=
𝑎̃𝜃𝑖 𝑝(𝜃𝑆 , 𝜃−𝑆 ) +

∑
𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄ 𝑐𝑘𝛿

𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 )

𝑎̃𝜃𝑖 𝑝(𝜃𝑆 , 𝜃
′
−𝑆 ) +

∑
𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄ 𝑐𝑘𝛿

𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃′−𝑆 )

∈ con{
𝑝(𝜃𝑆 , 𝜃−𝑆 )
𝑝(𝜃𝑆 , 𝜃′−𝑆 )

|𝜃𝑆 ∈Θ𝑆}.

However, the fact that 𝑎̃𝜃𝑗 > 𝑎̃𝜃′𝑗 and that 𝜃𝑆 maximizes { 𝑝(𝜃𝑆 ,𝜃−𝑆 )
𝑝(𝜃𝑆 ,𝜃′−𝑆 )

|𝜃𝑆 ∈Θ𝑆} imply

𝑎̃𝜃𝑗 𝑝(𝜃𝑆 , 𝜃−𝑆 )

𝑎̃𝜃′
𝑗
𝑝(𝜃𝑆 , 𝜃′−𝑆 )

>
𝑝(𝜃𝑆 , 𝜃−𝑆 )
𝑝(𝜃𝑆 , 𝜃′−𝑆 )

= max{
𝑝(𝜃𝑆 , 𝜃−𝑆 )
𝑝(𝜃𝑆 , 𝜃′−𝑆 )

|𝜃𝑆 ∈Θ𝑆}.

The two observations yield a contradiction. To this end, we have established that there exists 𝜅′ ∈ ℝ++ such that 𝜅′ = 𝑎̃𝜃𝑗 for all 
𝜃𝑗 ∈Θ𝑗 .

For the above 𝑗 ∉ 𝑆 and any 𝑖 ∈ 𝑆 , by the argument to establish (19), we conclude that

(𝜅′ − 𝜅)𝑝(𝜃) =
∑

𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘𝛿
𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 ),∀𝜃 = (𝜃𝑆 , 𝜃−𝑆 ) ∈ Θ.

Recall that all 𝛿𝑆𝑘 are non-truthful, and thus, there exists 𝑘 ∈ {1, ..., ̄𝑘} and two different type profiles 𝜃̄𝑆 ≠ 𝜃𝑆 such that 
𝑐𝑘𝛿

𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 ) > 0. As a result, the only way for the above equation to hold is 𝜅′ − 𝜅 > 0, which allows us to rewrite the above 
expression into

𝑝(𝜃) =
∑

𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘

𝜅′ − 𝜅
𝛿𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 ),∀𝜃 = (𝜃𝑆 , 𝜃−𝑆 ) ∈ Θ. (20)

Moreover, since each 𝑐𝑘 ⩾ 0 with the strict inequality holds for at least one 𝑘,∑
𝜃∈Θ

𝑝(𝜃) = 1 =
∑
𝜃∈Θ

∑
𝜃̄𝑆∈Θ𝑆

∑
𝑘=1,...,𝑘̄

𝑐𝑘

𝜅′ − 𝜅
𝛿𝑆𝑘[𝜃̄𝑆 ](𝜃𝑆 )𝑝(𝜃̄𝑆 , 𝜃−𝑆 ) =

∑
𝑘=1,...,𝑘̄

𝑐𝑘

𝜅′ − 𝜅
.

As a result, the vector ( 𝑐1
𝜅′−𝜅 , ..., 

𝑐𝑘̄
𝜅′−𝜅 ) is in the simplex. Therefore, (20) contradicts with our observation from Step 1. □

Proof of Proposition 2. Statement 2 ⇒ Statement 1 follows from Lemma 6. It remains to establish Statement 1 ⇒ Statement 2.
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Step 1. Fix any efficient allocation rule 𝑞 ∶ Θ →𝐴, and construct a transfer rule 𝜂.
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For each 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖, define

𝑤𝑖(𝜃𝑖) ≡
∑

𝜃−𝑖∈Θ−𝑖

[𝑢𝑖
(
𝑞(𝜃𝑖, 𝜃−𝑖), (𝜃𝑖, 𝜃−𝑖)

)
+ 1
𝑛
𝑢0
(
𝑞(𝜃𝑖, 𝜃−𝑖)

)
]𝑝(𝜃−𝑖|𝜃𝑖) − 1

𝑛
𝐹𝑆.

It is clear that 
∑
𝑖∈𝐼

∑
𝜃𝑖∈Θ𝑖 𝑤𝑖(𝜃𝑖)𝑝(𝜃𝑖) = 0. Hence, by Lemma A.3 of Kosenok and Severinov (2008), there exists an ex-post budget 

balanced transfer rule 𝜏 ∶ Θ →ℝ𝑛 such that 
∑
𝜃−𝑖∈Θ−𝑖

𝜏𝑖(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) =𝑤𝑖(𝜃𝑖) for all 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖.
For each 𝑖 ∈ 𝐼 and 𝜃 ∈Θ, define 𝜂𝑖(𝜃) ≡

1
𝑛
𝑢0
(
𝑞(𝜃)

)
− 𝜏𝑖(𝜃) −

1
𝑛
𝐹𝑆 . Apparently,∑

𝑖∈𝐼
𝜂𝑖(𝜃) = 𝑢0

(
𝑞(𝜃)

)
− 𝐹𝑆,∀𝜃 ∈Θ. (21)

Also, for all 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖,∑
𝜃−𝑖∈Θ−𝑖

𝜂𝑖(𝜃𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) definition of 𝜂,𝜏
= 1

𝑛

∑
𝜃−𝑖∈Θ−𝑖

𝑢0
(
𝑞(𝜃𝑖, 𝜃−𝑖)

)
𝑝(𝜃−𝑖|𝜃𝑖) −𝑤𝑖(𝜃𝑖) − 1

𝑛
𝐹𝑆

definition of𝑤
= −

∑
𝜃−𝑖∈Θ−𝑖

𝑢𝑖
(
𝑞(𝜃𝑖, 𝜃−𝑖), (𝜃𝑖, 𝜃−𝑖)

)
𝑝(𝜃−𝑖|𝜃𝑖). (22)

Step 2. Construct a multiplier 𝜆1.

For each 𝑖 ∈ 𝐼 and 𝜃̄𝑖, by Lemma 2, there exists 𝜙𝜃̄𝑖 satisfying the conditions stated therein. Now, fix any 𝜆1 ∈ℝ+ that is weakly

larger than

max
𝑖∈𝐼,

𝜃̄𝑖,𝜃̂𝑖∈Θ𝑖 with 𝜃̄𝑖≠𝜃̂𝑖

−𝑉𝑖[𝑞, 𝜂](𝜃̄𝑖, 𝜃̂𝑖)∑
𝜃−𝑖∈Θ−𝑖

𝜙
𝜃̄𝑖
𝑖
(𝜃̂𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃̄𝑖) .

Hence, for all 𝑖 ∈ 𝐼 , 𝜃̄𝑖, 𝜃̂𝑖 ∈Θ𝑖 with 𝜃̄𝑖 ≠ 𝜃̂𝑖,

0 ⩾ 𝑉𝑖[𝑞, 𝜂](𝜃̄𝑖, 𝜃̂𝑖) + 𝜆1
∑

𝜃−𝑖∈Θ−𝑖

𝜙
𝜃̄𝑖
𝑖
(𝜃̂𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃̄𝑖).

Step 3. Construct a multiplier 𝜆2.

For each 𝑆 ∈ 2𝐼∖{∅, 𝐼} with 2 ⩽ |𝑆| ⩽ 𝑛 −1, let 𝜙𝑆 ∶ Θ →ℝ𝑛 be a transfer rule satisfying conditions stated in Lemma 3. Moreover, 
let 𝛿𝑆1, ..., 𝛿𝑆𝑘̄ denote all non-truthful deterministic joint reporting strategies. For each 𝑘 = 1, ..., ̄𝑘, let 𝑞𝑘 ∶ Θ → 𝐴 be any allocation 
rule satisfying (2) and (3) under 𝛿𝑆𝑘. Now fix 𝜆2 ∈ℝ+ that strictly larger than

max
𝑆∈2𝐼∖{∅,𝐼}with 2⩽|𝑆|⩽𝑛−1,𝑘∈{1,...,𝑘̄},
𝑞𝑘∶Θ→𝐴 satisfying (2)(3) under 𝛿𝑆𝑘

−
∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞𝑘, 𝜂𝛿
𝑆𝑘 ](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 )∑

𝜃𝑆∈Θ𝑆

∑
𝜃̂𝑆∈Θ𝑆

∑
𝑖∈𝑆

∑
𝜃−𝑆∈Θ−𝑆

𝜙𝑆𝑖 (𝜃̂𝑆 , 𝜃−𝑆 )𝑝(𝜃𝑆 , 𝜃−𝑆 )𝛿
𝑆𝑘[𝜃𝑆 ](𝜃̂𝑆 )

.

Hence, for all 𝑆 ∈ 2𝐼∖{∅, 𝐼} with 2 ⩽ |𝑆| ⩽ 𝑛 − 1, deterministic 𝛿𝑆𝑘 ≠ 𝛿𝑆 , and 𝑞𝑘 ∶ Θ →𝐴 satisfying (2) and (3) under 𝛿𝑆𝑘,

0>
∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞𝑘, 𝜂𝛿
𝑆𝑘 ](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 )+𝜆2

∑
𝜃𝑆∈Θ𝑆

∑
𝜃̂𝑆∈Θ𝑆

∑
𝑖∈𝑆

∑
𝜃−𝑆∈Θ−𝑆

𝜙𝑆𝑖 (𝜃̂𝑆 , 𝜃−𝑆 )𝑝(𝜃𝑆 , 𝜃−𝑆 )𝛿
𝑆𝑘[𝜃𝑆 ](𝜃̂𝑆 ). (23)

Step 4. When 𝑛 ⩾ 3, define 𝑇 ≡ {𝜂 + 𝜆1𝜙𝜃𝑖 |𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖} ∪ {𝜂 + 𝜆2𝜙𝑆 |𝑆 ∈ 2𝐼∖{∅, 𝐼}with 2 ⩽ |𝑆| ⩽ 𝑛 − 1}. When 𝑛 = 2, define 
𝑇 ≡ {𝜂 + 𝜆1𝜙𝜃𝑖 |𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖}. Show that (𝑞, 𝑇 ) is a feasible ambiguous mechanism such that the MD’s ex-post revenue is constant 
and equal to 𝐹𝑆 .

We first show that (4) is satisfied. To see this, for each 𝑡 ∈ 𝑇 , either there is 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈Θ𝑖 such that 𝑡 = 𝜂 + 𝜆1𝜙𝜃𝑖 or there is 𝑆
such that 𝑡 = 𝜂 + 𝜆2𝜙𝑆 . Notice that 𝜙𝜃𝑖 and 𝜙𝑆 are ex-post budget balanced. As a result,

𝑢0
(
𝑞(𝜃)

)
−
∑
𝑖∈𝐼

𝑡𝑖(𝜃) = 𝑢0
(
𝑞(𝜃)

)
−
∑
𝑖∈𝐼

𝜂𝑖(𝜃)
(21)
= 𝑢0

(
𝑞(𝜃)

)
− [𝑢0

(
𝑞(𝜃)

)
− 𝐹𝑆] = 𝐹𝑆

for all 𝜃 ∈Θ, i.e., the ex-post payoff of the MD is constant and equal to 𝐹𝑆 .

Then we show that 𝑉𝑖[𝑞, 𝑇 ](𝜃𝑖, 𝜃𝑖) = 0 for all 𝑖 ∈ 𝐼 and 𝜃𝑖 ∈ Θ𝑖, i.e., IR binds. To see this, for each 𝑡 ∈ 𝑇 , either there is 𝑖 ∈ 𝐼 and 
𝜃𝑖 ∈ Θ𝑖 such that 𝑡 = 𝜂 + 𝜆1𝜙𝜃𝑖 or there is 𝑆 such that 𝑡 = 𝜂 + 𝜆2𝜙𝑆 . Recall Condition (𝑖) in Lemma 2 and Condition (𝑖) in Lemma 3. 
For each 𝑡 ∈ 𝑇 , 𝑖 ∈ 𝐼 , and 𝜃𝑖 ∈Θ𝑖,

𝑉 [𝑞, 𝑡](𝜃 , 𝜃 ) =
∑

[𝑢
(
𝑞(𝜃 , 𝜃 ), (𝜃 , 𝜃 )

)
+ 𝜂 (𝜃 , 𝜃 )]𝑝(𝜃 |𝜃 ) (22)

= 0. (24)
282
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To demonstrate IC, for each 𝑖 ∈ 𝐼 , 𝜃𝑖 ∈Θ𝑖, 𝜃̂𝑖 ∈Θ𝑖∖{𝜃𝑖}, and 𝑡 = 𝜂 + 𝜆1𝜙𝜃𝑖 ∈ 𝑇 ,

𝑉𝑖[𝑞, 𝑇 ](𝜃𝑖, 𝜃𝑖) = 0 ⩾ 𝑉𝑖[𝑞, 𝜂](𝜃𝑖, 𝜃̂𝑖) + 𝜆1
∑

𝜃−𝑖∈Θ−𝑖

𝜙
𝜃𝑖
𝑖
(𝜃̂𝑖, 𝜃−𝑖)𝑝(𝜃−𝑖|𝜃𝑖) = 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜃̂𝑖),

where the inequality follows from the choice of 𝜆1. The above two expressions jointly imply that 0 ⩾ 𝑉𝑖[𝑞, 𝑡](𝜃𝑖, 𝜎𝑖) for all 𝑖 ∈ 𝐼 and 
reporting strategy 𝜎𝑖. Therefore, 𝑉𝑖[𝑞, 𝑇 ](𝜃𝑖, 𝜃𝑖) ⩾ 𝑉𝑖[𝑞, 𝑇 ](𝜃𝑖, 𝜎𝑖) for any 𝜎𝑖.

To this end, we have completed Step 4.

Step 5. Show that (𝑞, 𝑇 ) satisfies RCP*.

Every 𝐼 -feasible ambiguous 𝐼 -reallocational manipulation leads to a feasible ambiguous mechanism because there is no agent out 
of 𝐼 . Also, notice that the MD’s ex-post payoff is constant and equal to 𝐹𝑆 . Hence, (𝑞, 𝑇 ) satisfies RCP* with respect to 𝐼 .

To show that (𝑞, 𝑇 ) satisfies RCP* with respect to each non-grand coalition 𝑆 , suppose that an ambiguous 𝑆-collusive mechanism 
(𝛿𝑆 , Ψ𝑆 ) induces an 𝑆-feasible ambiguous 𝑆-reallocational manipulation (𝑞, 𝑇 𝛿𝑆 +Ψ𝑆 ). When 𝛿𝑆 = 𝛿𝑆 , by (2) and (3) as well as the 
feasibility of (𝑞, 𝑇 ), this manipulation leads to a feasible ambiguous mechanism. Also, this manipulation does not affect the MD’s 
payoff. Hence, it only remains to discuss the case where 𝛿𝑆 ≠ 𝛿𝑆 .

As 𝛿𝑆 ≠ 𝛿𝑆 can be non-deterministic, view 𝛿𝑆 as a lottery 𝛿𝑆 = 𝛽0𝛿𝑆 +
∑
𝑘=1,...,𝑘̄ 𝛽𝑘𝛿

𝑆𝑘, where each 𝛿𝑆𝑘 is a non-truthful determin-

istic joint reporting strategy, (𝛽0, ..., 𝛽𝑘̄) is in the simplex, and there exists 𝑘 ∈ {1, 2, ..., ̄𝑘} such that 𝛽𝑘 > 0. Also, view 𝑞 as a lottery 
𝑞 = 𝛽0𝑞0 +

∑
𝑘=1,...,𝑘̄ 𝛽𝑘𝑞

𝑘, where 𝑞0 ∶ Θ →𝐴 satisfies expressions (2) and (3) under 𝛿𝑆 , and for each 𝑘 ∈ {1, ..., ̄𝑘}, 𝑞𝑘 ∶ Θ →𝐴 satisfies 
(2) and (3) under 𝛿𝑆𝑘.

Let 𝑡 = 𝜂 + 𝜆2𝜙𝑆 ∈ 𝑇 now. It is useful to notice that∑
𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞0, 𝑡𝛿
𝑆 ](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 ) =

∑
𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞0, 𝑡](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 ) ⩽
∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 )
(24)
= 0.

The first equality above follows from the fact that 𝛿𝑆 is truthful. The inequality follows from the fact that 𝛿𝑆 is truthful in expressions 
(2) and (3) as well as the efficiency of 𝑞. Also, recall from (23), for each 𝑘 ∈ {1, 2, ..., ̄𝑘},∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞𝑘, 𝑡𝛿
𝑆𝑘 ](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 ) < 0.

These inequalities as well as the fact that there exists 𝑘 ∈ {1, ..., ̄𝑘} such that 𝛽𝑘 > 0 lead to∑
𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡𝛿
𝑆 ](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 )

=𝛽0
∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞0, 𝑡𝛿
𝑆 ](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 ) +

∑
𝑘=1,...,𝑘̄

𝛽𝑘
∑

𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞𝑘, 𝑡𝛿
𝑆𝑘 ](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 ) < 0. (25)

Now fix any 𝜓𝑆 ∈Ψ𝑆 . By 𝑆-IR, for all 𝑖 ∈ 𝑆 , 𝜃𝑖 ∈Θ𝑖, and 𝑡 = 𝜂 + 𝜆2𝜙𝑆 ∈ 𝑇 ,∑
𝜃−𝑖∈Θ−𝑖

[
𝑢𝑖
(
𝑞(𝜃𝑖, 𝜃−𝑖), (𝜃𝑖, 𝜃−𝑖)

)
+

∑
𝜃′
𝑆
∈Θ𝑆

𝑡𝑖(𝜃′𝑆 , 𝜃−𝑆 )𝛿
𝑆 [𝜃𝑆 ](𝜃′𝑆 ) +𝜓

𝑆
𝑖

(
𝑡, (𝜃𝑖, 𝜃−𝑖)

)]
𝑝(𝜃−𝑖|𝜃𝑖) ⩾ 0.

A weighted sum of the above inequalities and the budget balance of 𝜓𝑆 within 𝑆 imply that∑
𝜃𝑆∈Θ𝑆

𝑉𝑆 [𝑞, 𝑡𝛿
𝑆 ](𝜃𝑆 , 𝜃𝑆 )𝑝(𝜃𝑆 ) ⩾ 0,

which contradicts (25). To this end, we conclude that (𝑞, 𝑇 ) satisfies RCP* with respect to 𝑆 . □

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .geb .2024 .03 .016.
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